Liang Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4545504/publications.pdf Version: 2024-02-01

LIANC KONC

#	Article	lF	CITATIONS
1	Exceptional visible-light-driven photocatalytic activity over BiOBr–ZnFe2O4 heterojunctions. Chemical Communications, 2011, 47, 5512-5514.	4.1	258
2	Unusual reactivity of visible-light-responsive AgBr–BiOBr heterojunction photocatalysts. Journal of Catalysis, 2012, 293, 116-125.	6.2	237
3	The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 212, 8-13.	3.9	201
4	Atomic-layer-deposition-enabled nonwoven membranes with hierarchical ZnO nanostructures for switchable water/oil separations. Journal of Membrane Science, 2015, 493, 478-485.	8.2	66
5	Visible-Light-Driven Photodegradation of Rhodamine B on Ag-Modified BiOBr. Catalysis Letters, 2012, 142, 771-778.	2.6	65
6	The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion. Applied Energy, 2016, 184, 9-18.	10.1	64
7	Enhancing the hydrophilicity and water permeability of polypropylene membranes by nitric acid activation and metal oxide deposition. Journal of Membrane Science, 2015, 487, 109-116.	8.2	59
8	Does noble metal modification improve the photocatalytic activity of BiOCl?. Progress in Natural Science: Materials International, 2013, 23, 286-293.	4.4	57
9	Activation of ilmenite as an oxygen carrier for solid-fueled chemical looping combustion. Applied Energy, 2017, 197, 40-51.	10.1	50
10	Enhanced visible-light-driven photocatalytic activity of mesoporous TiO2â^'xNx derived from the ethylenediamine-based complex. Nanoscale, 2013, 5, 5396.	5.6	43
11	Dye adsorption on zinc oxide nanoparticulates atomicâ€layerâ€deposited on polytetrafluoroethylene membranes. AICHE Journal, 2016, 62, 3982-3991.	3.6	38
12	Turning Low-Cost Filter Papers to Highly Efficient Membranes for Oil/Water Separation by Atomic-Layer-Deposition-Enabled Hydrophobization. Industrial & Engineering Chemistry Research, 2014, 53, 16516-16522.	3.7	32
13	Catalytic combustion of propane over mixed oxides derived from CuxMg3â^'xAl hydrotalcites. Fuel, 2012, 96, 257-263.	6.4	29
14	Rapid synthesis of BiOBrxI1-x photocatalysts: Insights to the visible-light photocatalytic activity and strong deviation from Vegard's law. Catalysis Today, 2019, 335, 477-484.	4.4	27
15	Use of Carbon Steel for Construction of Post-combustion CO ₂ Capture Facilities: A Pilot-Scale Corrosion Study. Industrial & Engineering Chemistry Research, 2017, 56, 4792-4803.	3.7	26
16	Experimental evaluations of solid-fueled pressurized chemical looping combustion – The effects of pressure, solid fuel and iron-based oxygen carriers. Applied Energy, 2017, 195, 1012-1022.	10.1	21
17	Fischer–Tropsch Synthesis: Influence of Acid Treatment and Preparation Method on Carbon Nanotube Supported Ruthenium Catalysts. Industrial & Engineering Chemistry Research, 2017, 56, 6408-6418.	3.7	15
18	Crosslinking of polyimide atomic-layer-deposited on polyethersulfone membranes for synergistically enhanced performances. Journal of Membrane Science, 2015, 486, 161-168.	8.2	14

LIANG KONG

#	Article	IF	CITATIONS
19	Bauxite-modified oxygen carrier for chemical looping combustion: A possible solution to the heat of combustion compensation. Chemical Engineering Research and Design, 2018, 131, 635-642.	5.6	14
20	Highly permeable and robust membranes assembled from block-copolymer-functionalized carbon nanotubes. Journal of Membrane Science, 2015, 493, 224-231.	8.2	10
21	Enhanced performances of polypropylene membranes by molecular layer deposition of polyimide. Chinese Journal of Chemical Engineering, 2016, 24, 843-849.	3.5	8
22	Surface functionalization of carbon nanotubes by direct encapsulation with varying dosages of amphiphilic block copolymers. Nanotechnology, 2015, 26, 325601.	2.6	7