David S Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4545406/publications.pdf Version: 2024-02-01

		11235	15698
152	17,576	73	129
papers	citations	h-index	g-index
155	155	155	22479
all docs	docs citations	times ranked	citing authors

ΠΛΥΙΟ S ΡΛΟΚ

#	Article	IF	CITATIONS
1	Characteristics of the Ontario Neurodegenerative Disease Research Initiative cohort. Alzheimer's and Dementia, 2023, 19, 226-243.	0.4	15
2	Cdk5-mediated JIP1 phosphorylation regulates axonal outgrowth through Notch1 inhibition. BMC Biology, 2022, 20, 115.	1.7	3
3	Age-associated insolubility of parkin in human midbrain is linked to redox balance and sequestration of reactive dopamine metabolites. Acta Neuropathologica, 2021, 141, 725-754.	3.9	32
4	Neuronal cell-based high-throughput screen for enhancers of mitochondrial function reveals luteolin as a modulator of mitochondria-endoplasmic reticulum coupling. BMC Biology, 2021, 19, 57.	1.7	21
5	High Levels of Serum IgG for Opisthorchis viverrini and CD44 Expression Predict Worse Prognosis for Cholangiocarcinoma Patients after Curative Resection. International Journal of General Medicine, 2021, Volume 14, 2191-2204.	0.8	5
6	A functionalized hydroxydopamine quinone links thiol modification to neuronal cell death. Redox Biology, 2020, 28, 101377.	3.9	23
7	DJ-1 (Park7) affects the gut microbiome, metabolites and the development of innate lymphoid cells (ILCs). Scientific Reports, 2020, 10, 16131.	1.6	16
8	MCL-1Matrix maintains neuronal survival by enhancing mitochondrial integrity and bioenergetic capacity under stress conditions. Cell Death and Disease, 2020, 11, 321.	2.7	68
9	<i>Lrrk2</i> alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Science Translational Medicine, 2019, 11, .	5.8	67
10	The pro-death role of Cited2 in stroke is regulated by E2F1/4 transcription factors. Journal of Biological Chemistry, 2019, 294, 8617-8629.	1.6	10
11	Systems biology identifies preserved integrity but impaired metabolism of mitochondria due to a glycolytic defect in Alzheimer's disease neurons. Aging Cell, 2019, 18, e12924.	3.0	46
12	Pink1 regulates <scp>FKBP</scp> 5 interaction with <scp>AKT</scp> / <scp>PHLPP</scp> and protects neurons from neurotoxin stress induced by <scp>MPP</scp> ⁺ . Journal of Neurochemistry, 2019, 150, 312-329.	2.1	37
13	DJ-1 modulates the unfolded protein response and cell death via upregulation of ATF4 following ER stress. Cell Death and Disease, 2019, 10, 135.	2.7	29
14	Comparative analysis of Parkinson's disease–associated genes in mice reveals altered survival and bioenergetics of Parkin-deficient dopamine neurons. Journal of Biological Chemistry, 2018, 293, 9580-9593.	1.6	30
15	Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death and Differentiation, 2018, 25, 542-572.	5.0	120
16	Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5164-E5173.	3.3	83
17	Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. Human Molecular Genetics, 2017, 26, 3327-3341.	1.4	124
18	Cdc25A Is a Critical Mediator of Ischemic Neuronal Death <i>In Vitro</i> and <i>In Vivo</i> . Journal of Neuroscience, 2017, 37, 6729-6740.	1.7	10

#	Article	IF	CITATIONS
19	β2-Adrenoreceptor is a regulator of the α-synuclein gene driving risk of Parkinson's disease. Science, 2017, 357, 891-898.	6.0	341
20	PINK1-mediated phosphorylation of LETM1 regulates mitochondrial calcium transport and protects neurons against mitochondrial stress. Nature Communications, 2017, 8, 1399.	5.8	87
21	LRRK2(I2020T) functional genetic interactors that modify eye degeneration and dopaminergic cell loss in Drosophila. Human Molecular Genetics, 2017, 26, 1247-1257.	1.4	17
22	RB regulates the production and the survival of newborn neurons in the embryonic and adult dentate gyrus. Hippocampus, 2016, 26, 1379-1392.	0.9	18
23	Mitochondrial Dynamics Impacts Stem Cell Identity and Fate Decisions by Regulating a Nuclear Transcriptional Program. Cell Stem Cell, 2016, 19, 232-247.	5.2	469
24	CDK5 phosphorylates DRP1 and drives mitochondrial defects in NMDA-induced neuronal death. Human Molecular Genetics, 2015, 24, 4573-4583.	1.4	76
25	BAG2 Gene-mediated Regulation of PINK1 Protein Is Critical for Mitochondrial Translocation of PARKIN and Neuronal Survival. Journal of Biological Chemistry, 2015, 290, 30441-30452.	1.6	52
26	Pathological Axonal Death through a MAPK Cascade that Triggers a Local Energy Deficit. Cell, 2015, 160, 161-176.	13.5	248
27	Induction of Protein Deletion Through In Utero Electroporation to Define Deficits in Neuronal Migration in Transgenic Models. Journal of Visualized Experiments, 2015, , 51983.	0.2	2
28	DJ-1 Interacts with and Regulates Paraoxonase-2, an Enzyme Critical for Neuronal Survival in Response to Oxidative Stress. PLoS ONE, 2014, 9, e106601.	1.1	42
29	Regulation of the VHL/HIF-1 Pathway by DJ-1. Journal of Neuroscience, 2014, 34, 8043-8050.	1.7	34
30	Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nature Communications, 2014, 5, 3550.	5.8	141
31	OPA1â€dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO Journal, 2014, 33, 2676-2691.	3.5	312
32	Regulation of Ischemic Neuronal Death by E2F4-p130 Protein Complexes. Journal of Biological Chemistry, 2014, 289, 18202-18213.	1.6	22
33	Unaltered Striatal Dopamine Release Levels in Young Parkin Knockout, Pink1 Knockout, DJ-1 Knockout and LRRK2 R1441G Transgenic Mice. PLoS ONE, 2014, 9, e94826.	1.1	26
34	Perturbation of Transcription Factor Nur77 Expression Mediated by Myocyte Enhancer Factor 2D (MEF2D) Regulates Dopaminergic Neuron Loss in Response to 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Journal of Biological Chemistry, 2013, 288, 14362-14371.	1.6	26
35	Opposing Regulation of Sox2 by Cell-Cycle Effectors E2f3a and E2f3b in Neural Stem Cells. Cell Stem Cell, 2013, 12, 440-452.	5.2	68
36	Pocket proteins pRb and p107 are required for cortical lamination independent of apoptosis. Developmental Biology, 2013, 384, 101-113.	0.9	8

#	Article	IF	CITATIONS
37	Conditional Disruption of Calpain in the CNS Alters Dendrite Morphology, Impairs LTP, and Promotes Neuronal Survival following Injury. Journal of Neuroscience, 2013, 33, 5773-5784.	1.7	87
38	LXCXE-independent chromatin remodeling by Rb/E2f mediates neuronal quiescence. Cell Cycle, 2013, 12, 1416-1423.	1.3	17
39	LKB1-regulated adaptive mechanisms are essential for neuronal survival following mitochondrial dysfunction. Human Molecular Genetics, 2013, 22, 952-962.	1.4	21
40	ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons. Human Molecular Genetics, 2012, 21, 4888-4903.	1.4	186
41	The Rb/E2F Pathway Modulates Neurogenesis through Direct Regulation of the Dlx1/Dlx2 Bigene Cluster. Journal of Neuroscience, 2012, 32, 8219-8230.	1.7	44
42	Progressive dopaminergic cell loss with unilateral-to-bilateral progression in a genetic model of Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15918-15923.	3.3	72
43	The Retinoblastoma Protein Is Essential for Survival of Postmitotic Neurons. Journal of Neuroscience, 2012, 32, 14809-14814.	1.7	45
44	Programmed Cell Death in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009365-a009365.	2.9	196
45	Inactivation of Pink1 Gene in Vivo Sensitizes Dopamine-producing Neurons to 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and Can Be Rescued by Autosomal Recessive Parkinson Disease Genes, Parkin or DJ-1. Journal of Biological Chemistry, 2012, 287, 23162-23170.	1.6	75
46	Selective neuroprotective effects of the S18Y polymorphic variant of UCH-L1 in the dopaminergic system. Human Molecular Genetics, 2012, 21, 874-889.	1.4	34
47	Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Reports, 2012, 13, 378-385.	2.0	558
48	Animal Models of Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-2.	0.6	4
49	Resveratrol induces apoptosis in breast cancer cells by E2F1-mediated up-regulation of ASPP1. Oncology Reports, 2011, 25, 1713-9.	1.2	38
50	MCL-1 is a stress sensor that regulates autophagy in a developmentally regulated manner. EMBO Journal, 2011, 30, 395-407.	3.5	159
51	Parkinson's disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures. Journal of Neural Transmission, 2011, 118, 795-808.	1.4	230
52	Rb/E2F Regulates Expression of Neogenin during Neuronal Migration. Molecular and Cellular Biology, 2011, 31, 238-247.	1.1	51
53	Involvement of the Fcγ Receptor in a Chronic N-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Mouse Model of Dopaminergic Loss. Journal of Biological Chemistry, 2011, 286, 28783-28793.	1.6	21
54	The Mitochondrial Inner Membrane GTPase, Optic Atrophy 1 (Opa1), Restores Mitochondrial Morphology and Promotes Neuronal Survival following Excitotoxicity. Journal of Biological Chemistry, 2011, 286, 4772-4782.	1.6	101

#	Article	IF	CITATIONS
55	Pimâ€l kinase as activator of the cell cycle pathway in neuronal death induced by DNA damage. Journal of Neurochemistry, 2010, 112, 497-510.	2.1	20
56	The role of Cdk5-mediated apurinic/apyrimidinic endonuclease 1 phosphorylation in neuronal death. Nature Cell Biology, 2010, 12, 563-571.	4.6	109
57	Activation of FoxO by LRRK2 induces expression of proapoptotic proteins and alters survival of postmitotic dopaminergic neuron in Drosophila. Human Molecular Genetics, 2010, 19, 3747-3758.	1.4	84
58	Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics. Human Molecular Genetics, 2010, 19, 3734-3746.	1.4	343
59	Sertad1 Plays an Essential Role in Developmentaland Pathological Neuron Death. Journal of Neuroscience, 2010, 30, 3973-3982.	1.7	23
60	DJ-1 protects the nigrostriatal axis from the neurotoxin MPTP by modulation of the AKT pathway. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3186-3191.	3.3	145
61	Neuronal Apoptosis Induced by Endoplasmic Reticulum Stress Is Regulated by ATF4–CHOP-Mediated Induction of the Bcl-2 Homology 3-Only Member PUMA. Journal of Neuroscience, 2010, 30, 16938-16948.	1.7	280
62	Cdk5: Links to DNA damage. Cell Cycle, 2010, 9, 3142-3143.	1.3	10
63	Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission. Journal of Biological Chemistry, 2009, 284, 13843-13855.	1.6	845
64	Essential Role of Cytoplasmic cdk5 and Prx2 in Multiple Ischemic Injury Models, <i>In Vivo</i> . Journal of Neuroscience, 2009, 29, 12497-12505.	1.7	72
65	E2F4 Is Required for Early Eye Patterning. Developmental Neuroscience, 2009, 31, 238-246.	1.0	5
66	Parkinson's Disease: To Live or Die by Autophagy. Science Signaling, 2009, 2, pe21.	1.6	18
67	The p107/E2F Pathway Regulates Fibroblast Growth Factor 2 Responsiveness in Neural Precursor Cells. Molecular and Cellular Biology, 2009, 29, 4701-4713.	1.1	15
68	Leucine-rich repeat kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson's disease. Human Molecular Genetics, 2009, 18, 4390-4404.	1.4	170
69	Amyloid-β ₄₂ signals tau hyperphosphorylation and compromises neuronal viability by disrupting alkylacylglycerophosphocholine metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20936-20941.	3.3	64
70	DJ-1/PARK7 is an important mediator of hypoxia-induced cellular responses. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1111-1116.	3.3	190
71	Abberant α-Synuclein Confers Toxicity to Neurons in Part through Inhibition of Chaperone-Mediated Autophagy. PLoS ONE, 2009, 4, e5515.	1.1	304
72	Mcl-1 Is a Key Regulator of Apoptosis during CNS Development and after DNA Damage. Journal of Neuroscience, 2008, 28, 6068-6078.	1.7	166

#	Article	IF	CITATIONS
73	Delayed combinatorial treatment with flavopiridol and minocycline provides longer term protection for neuronal soma but not dendrites following global ischemia. Journal of Neurochemistry, 2008, 105, 703-713.	2.1	20
74	CITED2 Signals through Peroxisome Proliferator-Activated Receptor-Â to Regulate Death of Cortical Neurons after DNA Damage. Journal of Neuroscience, 2008, 28, 5559-5569.	1.7	24
75	Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1716-1721.	3.3	228
76	Required Roles of Bax and JNKs in Central and Peripheral Nervous System Death of Retinoblastoma-deficient Mice. Journal of Biological Chemistry, 2008, 283, 405-415.	1.6	9
77	Mitofusin 2 Protects Cerebellar Granule Neurons against Injury-induced Cell Death*. Journal of Biological Chemistry, 2007, 282, 23788-23798.	1.6	161
78	The Parkinson's disease gene DJ-1 is also a key regulator of stroke-induced damage. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18748-18753.	3.3	148
79	The Retinoblastoma family member p107 regulates the rate of progenitor commitment to a neuronal fate. Journal of Cell Biology, 2007, 178, 129-139.	2.3	41
80	Unique Requirement for Rb/E2F3 in Neuronal Migration: Evidence for Cell Cycle-Independent Functions. Molecular and Cellular Biology, 2007, 27, 4825-4843.	1.1	80
81	Cell Cycle Regulator E2F4 Is Essential for the Development of the Ventral Telencephalon. Journal of Neuroscience, 2007, 27, 5926-5935.	1.7	28
82	Role of Cdk5-Mediated Phosphorylation of Prx2 in MPTP Toxicity and Parkinson's Disease. Neuron, 2007, 55, 37-52.	3.8	225
83	Cell cycle machinery and stroke. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 484-493.	1.8	82
84	Involvement of Interferon-Â in Microglial-Mediated Loss of Dopaminergic Neurons. Journal of Neuroscience, 2007, 27, 3328-3337.	1.7	258
85	The nuclear localization of SET mediated by impα3/impβ attenuates its cytosolic toxicity in neurons. Journal of Neurochemistry, 2007, 103, 408-422.	2.1	29
86	Calpain-Regulated p35/cdk5 Plays a Central Role in Dopaminergic Neuron Death through Modulation of the Transcription Factor Myocyte Enhancer Factor 2. Journal of Neuroscience, 2006, 26, 440-447.	1.7	175
87	Regulation of axotomy-induced dopaminergic neuron death and c-Jun phosphorylation by targeted inhibition of cdc42 or mixed lineage kinase. Journal of Neurochemistry, 2006, 96, 489-499.	2.1	13
88	NFκB in neurons? The Uncertainty Principle in neurobiology. Journal of Neurochemistry, 2006, 97, 607-618.	2.1	44
89	Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO Journal, 2006, 25, 4061-4073.	3.5	175
90	The Chk1/Cdc25A Pathway as Activators of the Cell Cycle in Neuronal Death Induced by Camptothecin. Journal of Neuroscience, 2006, 26, 8819-8828.	1.7	53

#	Article	IF	CITATIONS
91	Role of cyclooxygenaseâ€2 induction by transcription factor Sp1 and Sp3 in neuronal oxidative and DNA damage response. FASEB Journal, 2006, 20, 2375-2377.	0.2	52
92	Calpain Proteolysis and the Etiology of Parkinson's Disease: An Emerging Hypothesis. , 2005, , 25-61.		1
93	MPTP induces intranuclear rodlet formation in midbrain dopaminergic neurons. Brain Research, 2005, 1066, 86-91.	1.1	9
94	Apical role for BRG1 in cytokine-induced promoter assembly. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14611-14616.	3.3	87
95	Multiple cyclin-dependent kinases signals are critical mediators of ischemia/hypoxic neuronal death in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14080-14085.	3.3	128
96	Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5215-5220.	3.3	639
97	Differential Roles of Nuclear and Cytoplasmic Cyclin-Dependent Kinase 5 in Apoptotic and Excitotoxic Neuronal Death. Journal of Neuroscience, 2005, 25, 8954-8966.	1.7	122
98	Cyclin-Dependent Kinase 5 Mediates Neurotoxin-Induced Degradation of the Transcription Factor Myocyte Enhancer Factor 2. Journal of Neuroscience, 2005, 25, 4823-4834.	1.7	115
99	Apoptosis-Inducing Factor Is a Key Factor in Neuronal Cell Death Propagated by BAX-Dependent and BAX-Independent Mechanisms. Journal of Neuroscience, 2005, 25, 1324-1334.	1.7	176
100	c-Jun N-terminal Kinase 3 Deficiency Protects Neurons from Axotomy-induced Death in Vivo through Mechanisms Independent of c-Jun Phosphorylation. Journal of Biological Chemistry, 2005, 280, 1132-1141.	1.6	38
101	p107 regulates neural precursor cells in the mammalian brain. Journal of Cell Biology, 2004, 166, 853-863.	2.3	92
102	Emerging Pathogenic Role for Cyclin Dependent Kinases in Neurodegeneration. Cell Cycle, 2004, 3, 287-289.	1.3	25
103	Nuclear Factor-ÂB Modulates the p53 Response in Neurons Exposed to DNA Damage. Journal of Neuroscience, 2004, 24, 2963-2973.	1.7	110
104	p53 Activation Domain 1 Is Essential for PUMA Upregulation and p53-Mediated Neuronal Cell Death. Journal of Neuroscience, 2004, 24, 10003-10012.	1.7	81
105	The Proapoptotic Gene SIVA Is a Direct Transcriptional Target for the Tumor Suppressors p53 and E2F1. Journal of Biological Chemistry, 2004, 279, 28706-28714.	1.6	73
106	Regulation of Dopaminergic Loss by Fas in a 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Model of Parkinson's Disease. Journal of Neuroscience, 2004, 24, 2045-2053.	1.7	122
107	Comparison of rectilinear biphasic waveform energy versus truncated exponential biphasic waveform energy for transthoracic cardioversion of atrial fibrillation. American Journal of Cardiology, 2004, 94, 1438-1440.	0.7	19
108	BAG5 Inhibits Parkin and Enhances Dopaminergic Neuron Degeneration. Neuron, 2004, 44, 931-945.	3.8	199

#	Article	IF	CITATIONS
109	CDKs: taking on a role as mediators of dopaminergic loss in Parkinson's disease. Trends in Molecular Medicine, 2004, 10, 445-451.	3.5	37
110	Emerging pathogenic role for cyclin dependent kinases in neurodegeneration. Cell Cycle, 2004, 3, 289-91.	1.3	8
111	Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13650-13655.	3.3	288
112	Calpains Mediate p53 Activation and Neuronal Death Evoked by DNA Damage. Journal of Biological Chemistry, 2003, 278, 26031-26038.	1.6	79
113	Ataxia Telangiectasia-mutated Protein Can Regulate p53 and Neuronal Death Independent of Chk2 in Response to DNA Damage. Journal of Biological Chemistry, 2003, 278, 37782-37789.	1.6	40
114	Inhibition of Calpains Prevents Neuronal and Behavioral Deficits in an MPTP Mouse Model of Parkinson's Disease. Journal of Neuroscience, 2003, 23, 4081-4091.	1.7	265
115	Cyclin-Dependent Kinase Activity Is Required for Apoptotic Death But Not Inclusion Formation in Cortical Neurons after Proteasomal Inhibition. Journal of Neuroscience, 2003, 23, 1237-1245.	1.7	107
116	Activation of the Rb/E2F1 Pathway by the Nonproliferative p38 MAPK during Fas (APO1/CD95)-mediated Neuronal Apoptosis. Journal of Biological Chemistry, 2002, 277, 48764-48770.	1.6	63
117	Interaction of the c-Jun/JNK Pathway and Cyclin-dependent Kinases in Death of Embryonic Cortical Neurons Evoked by DNA Damage. Journal of Biological Chemistry, 2002, 277, 35586-35596.	1.6	40
118	Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. Journal of Cell Biology, 2002, 158, 507-517.	2.3	434
119	Constitutive Nuclear Factor-ή Activity Is Required for Central Neuron Survival. Journal of Neuroscience, 2002, 22, 8466-8475.	1.7	294
120	Cyclin-dependent kinases as potential targets to improve stroke outcome. , 2002, 93, 135-143.		43
121	Inhibition of Cyclin-Dependent Kinases Improves CA1 Neuronal Survival and Behavioral Performance after Global Ischemia in the Rat. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 171-182.	2.4	99
122	Telencephalon-specific Rb knockouts reveal enhanced neurogenesis, survival and abnormal cortical development. EMBO Journal, 2002, 21, 3337-3346.	3.5	142
123	Cyclin-Dependent Kinases and P53 Pathways Are Activated Independently and Mediate Bax Activation in Neurons after DNA Damage. Journal of Neuroscience, 2001, 21, 5017-5026.	1.7	100
124	Caspase 3 Deficiency Rescues Peripheral Nervous System Defect in Retinoblastoma Nullizygous Mice. Journal of Neuroscience, 2001, 21, 7089-7098.	1.7	34
125	NAIP protects the nigrostriatal dopamine pathway in an intrastriatal 6-OHDA rat model of Parkinson's disease. European Journal of Neuroscience, 2001, 14, 391-400.	1.2	72
126	c-Jun mediates axotomy-induced dopamine neuron death in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13385-13390.	3.3	84

#	Article	IF	CITATIONS
127	APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. Journal of Cell Biology, 2001, 155, 207-216.	2.3	184
128	Cyclin-dependent kinases and stroke. Expert Opinion on Therapeutic Targets, 2001, 5, 557-567.	1.5	10
129	Helper-dependent adenovirus vectors: their use as a gene delivery system to neurons. Gene Therapy, 2000, 7, 1200-1209.	2.3	45
130	Involvement of Retinoblastoma Family Members and E2F/DP Complexes in the Death of Neurons Evoked by DNA Damage. Journal of Neuroscience, 2000, 20, 3104-3114.	1.7	146
131	E2F1 Mediates Death of B-amyloid-treated Cortical Neurons in a Manner Independent of p53 and Dependent on Bax and Caspase 3. Journal of Biological Chemistry, 2000, 275, 11553-11560.	1.6	195
132	Cyclin-dependent kinases as a therapeutic target for stroke. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 10254-10259.	3.3	271
133	Induction and Modulation of Cerebellar Granule Neuron Death by E2F-1. Journal of Biological Chemistry, 2000, 275, 25358-25364.	1.6	136
134	The Rb-CDK4/6 Signaling Pathway Is Critical in Neural Precursor Cell Cycle Regulation. Journal of Biological Chemistry, 2000, 275, 33593-33600.	1.6	68
135	Involvement of Caspase 3 in Apoptotic Death of Cortical Neurons Evoked by DNA Damage. Molecular and Cellular Neurosciences, 2000, 15, 368-379.	1.0	89
136	Cell cycle regulators in neuronal death evoked by excitotoxic stress: implications for neurodegeneration and its treatment. Neurobiology of Aging, 2000, 21, 771-781.	1.5	141
137	Bax-Dependent Caspase-3 Activation Is a Key Determinant in p53-Induced Apoptosis in Neurons. Journal of Neuroscience, 1999, 19, 7860-7869.	1.7	352
138	Caspase-Dependent and -Independent Death of Camptothecin-Treated Embryonic Cortical Neurons. Journal of Neuroscience, 1999, 19, 6235-6247.	1.7	195
139	Role of Cell Cycle Regulatory Proteins in Cerebellar Granule Neuron Apoptosis. Journal of Neuroscience, 1999, 19, 8747-8756.	1.7	238
140	Involvement of Cell Cycle Elements, Cyclin-dependent Kinases, pRb, and E2F·DP, in B-amyloid-induced Neuronal Death. Journal of Biological Chemistry, 1999, 274, 19011-19016.	1.6	219
141	Cyclin-dependent Kinases Participate in Death of Neurons Evoked by DNA-damaging Agents. Journal of Cell Biology, 1998, 143, 457-467.	2.3	252
142	Multiple Pathways of Neuronal Death Induced by DNA-Damaging Agents, NGF Deprivation, and Oxidative Stress. Journal of Neuroscience, 1998, 18, 830-840.	1.7	229
143	Cyclin Dependent Kinase Inhibitors and Dominant Negative Cyclin Dependent Kinase 4 and 6 Promote Survival of NGF-Deprived Sympathetic Neurons. Journal of Neuroscience, 1997, 17, 8975-8983.	1.7	265
144	G1/S Cell Cycle Blockers and Inhibitors of Cyclin-Dependent Kinases Suppress Camptothecin-Induced Neuronal Apoptosis. Journal of Neuroscience, 1997, 17, 1256-1270.	1.7	266

#	Article	IF	CITATIONS
145	Ordering the Multiple Pathways of Apoptosis. Trends in Cardiovascular Medicine, 1997, 7, 294-301.	2.3	16
146	A novel arylsulfatase A protein variant and genotype in two patients with major depression. Journal of Affective Disorders, 1996, 40, 137-147.	2.0	11
147	Arylsulfatase A: Relationship of genotype to variant electrophoretic properties. Biochemical Genetics, 1996, 34, 149-161.	0.8	1
148	Association of Alcoholism with the N-Glycosylation Polymorphism of Pseudodeficient Human Arylsulfatase A. Alcoholism: Clinical and Experimental Research, 1996, 20, 228-233.	1.4	21
149	Structural Characterization of Variant Forms of Arylsulfatase A that Associate with Alcoholism. Alcoholism: Clinical and Experimental Research, 1996, 20, 234-239.	1.4	7
150	Inhibitors of Cyclin-dependent Kinases Promote Survival of Post-mitotic Neuronally Differentiated PC12 Cells and Sympathetic Neurons. Journal of Biological Chemistry, 1996, 271, 8161-8169.	1.6	230
151	Ordering the Cell Death Pathway. Journal of Biological Chemistry, 1996, 271, 21898-21905.	1.6	207
152	Induction of CPP32-like Activity in PC12 Cells by Withdrawal of Trophic Support. Journal of Biological Chemistry, 1996, 271, 30663-30671.	1.6	133