Andrew A Amis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4544811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anatomy and biomechanics of the medial patellofemoral ligament. Knee, 2003, 10, 215-220.	1.6	642
2	Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. Journal of Bone and Joint Surgery: British Volume, 1991, 73-B, 260-267.	3.4	605
3	The consequences of meniscectomy. Journal of Bone and Joint Surgery: British Volume, 2006, 88-B, 1549-1556.	3.4	460
4	The mechanical properties of the two bundles of the human posterior cruciate ligament. Journal of Biomechanics, 1994, 27, 13-24.	2.1	379
5	The anterolateral ligament. Bone and Joint Journal, 2014, 96-B, 325-331.	4.4	348
6	The effects of articular, retinacular, or muscular deficiencies on patellofemoral joint stability. Journal of Bone and Joint Surgery: British Volume, 2005, 87-B, 577-582.	3.4	310
7	Tensile strength of the medial patellofemoral ligament before and after repair or reconstruction. Journal of Bone and Joint Surgery: British Volume, 2005, 87-B, 36-40.	3.4	283
8	The Role of the Anterolateral Structures and the ACL in Controlling Laxity of the Intact and ACL-Deficient Knee. American Journal of Sports Medicine, 2016, 44, 345-354.	4.2	276
9	Quantitative study of the quadriceps muscles and trochlear groove geometry related to instability of the patellofemoral joint. Journal of Orthopaedic Research, 1998, 16, 136-143.	2.3	263
10	The Role of the Medial Collateral Ligament and Posteromedial Capsule in Controlling Knee Laxity. American Journal of Sports Medicine, 2006, 34, 1815-1823.	4.2	248
11	The anterolateral complex of the knee: results from the International ALC Consensus Group Meeting. Knee Surgery, Sports Traumatology, Arthroscopy, 2019, 27, 166-176.	4.2	242
12	PCL reconstruction: In vitro biomechanical comparison of 'isometric' versus single and double-bundled 'anatomic' grafts. Journal of Bone and Joint Surgery: British Volume, 1998, 80, 173-179.	3.4	231
13	Structural properties of the medial collateral ligament complex of the human knee. Journal of Biomechanics, 2005, 38, 1067-1074.	2.1	227
14	Current Concepts Review. American Journal of Sports Medicine, 2007, 35, 484-492.	4.2	220
15	Posteromedial Meniscocapsular Lesions Increase Tibiofemoral Joint Laxity With Anterior Cruciate Ligament Deficiency, and Their Repair Reduces Laxity. American Journal of Sports Medicine, 2016, 44, 400-408.	4.2	208
16	Current Concepts on Anatomy and Biomechanics of Patellar Stability. Sports Medicine and Arthroscopy Review, 2007, 15, 48-56.	2.3	204
17	Surgical Biomechanics of the Patellofemoral Joint. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2007, 23, 542-553.	2.7	202
18	Biomechanical Comparison of Anterolateral Procedures Combined With Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2017, 45, 347-354.	4.2	201

#	Article	IF	CITATIONS
19	Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodelling. Journal of Biomechanics, 1999, 32, 695-703.	2.1	199
20	Biomechanics of high tibial osteotomy. Knee Surgery, Sports Traumatology, Arthroscopy, 2013, 21, 197-205.	4.2	194
21	Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments. Knee Surgery, Sports Traumatology, Arthroscopy, 2006, 14, 257-263.	4.2	186
22	The posteromedial corner revisited. Journal of Bone and Joint Surgery: British Volume, 2004, 86-B, 674-681.	3.4	185
23	The attachments of the anteromedial and posterolateral fibre bundles of the anterior cruciate ligament. Knee Surgery, Sports Traumatology, Arthroscopy, 2008, 16, 29-36.	4.2	182
24	Biomechanical Comparison of Anatomic Double-Bundle, Anatomic Single-Bundle, and Nonanatomic Single-Bundle Anterior Cruciate Ligament Reconstructions. American Journal of Sports Medicine, 2011, 39, 279-288.	4.2	182
25	The Medial Patellofemoral Ligament. American Journal of Sports Medicine, 2012, 40, 1871-1879.	4.2	179
26	Elbow joint force predictions for some strenuous isometric actions. Journal of Biomechanics, 1980, 13, 765-775.	2.1	175
27	Anatomic and Biomechanical Study of the Lateral Collateral and Popliteofibular Ligaments. American Journal of Sports Medicine, 2001, 29, 466-472.	4.2	175
28	Comparative Pull-Out and Cyclic-Loading Strength Tests of Anchorage of Hamstring Tendon Grafts in Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 1999, 27, 621-625.	4.2	169
29	Biomechanics of the PCL and related structures: posterolateral, posteromedial and meniscofemoral ligaments. Knee Surgery, Sports Traumatology, Arthroscopy, 2003, 11, 271-281.	4.2	169
30	Length Change Patterns in the Lateral Extra-articular Structures of the Knee and Related Reconstructions. American Journal of Sports Medicine, 2015, 43, 354-362.	4.2	168
31	The Effect of Femoral Tunnel Position and Graft Tension on Patellar Contact Mechanics and Kinematics After Medial Patellofemoral Ligament Reconstruction. American Journal of Sports Medicine, 2014, 42, 364-372.	4.2	163
32	Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. Journal of Bone and Joint Surgery: British Volume, 2002, 84, 1075-1081.	3.4	159
33	The effect of muscle loading on the simulation of bone remodelling in the proximal femur. Journal of Biomechanics, 2005, 38, 133-139.	2.1	155
34	Variation of finger forces in maximal isometric grasp tests on a range of cylinder diameters. Journal of Biomedical Engineering, 1987, 9, 313-320.	0.7	154
35	Patellofemoral kinematics during knee flexion-extension: An in vitro study. Journal of Orthopaedic Research, 2006, 24, 2201-2211.	2.3	154
36	The attachments of the anteromedial and posterolateral fibre bundles of the anterior cruciate ligament. Knee Surgery, Sports Traumatology, Arthroscopy, 2007, 15, 1414-1421.	4.2	153

#	Article	IF	CITATIONS
37	Measurement of Patellar Tracking: Assessment and Analysis of the Literature. Clinical Orthopaedics and Related Research, 2003, 412, 241-259.	1.5	143
38	Finite element modelling of primary hip stem stability: The effect of interference fit. Journal of Biomechanics, 2008, 41, 587-594.	2.1	142
39	Biomechanics of the meniscus-meniscal ligament construct of the knee. Knee Surgery, Sports Traumatology, Arthroscopy, 2008, 16, 1121-1132.	4.2	138
40	Effects of lateral retinacular release on the lateral stability of the patella. Knee Surgery, Sports Traumatology, Arthroscopy, 2006, 14, 273-277.	4.2	135
41	Anterolateral Tenodesis or Anterolateral Ligament Complex Reconstruction: Effect of Flexion Angle at Graft Fixation When Combined With ACL Reconstruction. American Journal of Sports Medicine, 2017, 45, 3089-3097.	4.2	131
42	The Attachments of the Fiber Bundles of the Posterior Cruciate Ligament: An Anatomic Study. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2007, 23, 284-290.	2.7	129
43	The effect of trochleoplasty on patellar stability and kinematics. Journal of Bone and Joint Surgery: British Volume, 2008, 90-B, 864-869.	3.4	124
44	Quantitative measurement of patellofemoral joint stability: Force–displacement behavior of the human patella in vitro. Journal of Orthopaedic Research, 2003, 21, 780-786.	2.3	123
45	Patellofemoral malalignment: looking beyond the viewbox. Clinics in Sports Medicine, 2002, 21, 521-546.	1.8	120
46	Biomechanics of intra-articular and extra-articular reconstruction of the anterior cruciate ligament. Journal of Bone and Joint Surgery: British Volume, 1993, 75-B, 812-817.	3.4	117
47	The functions of the fibre bundles of the anterior cruciate ligament in anterior drawer, rotational laxity and the pivot shift. Knee Surgery, Sports Traumatology, Arthroscopy, 2012, 20, 613-620.	4.2	117
48	Extra-articular techniques in anterior cruciate ligament reconstruction. Journal of Bone and Joint Surgery: British Volume, 2011, 93-B, 1440-1448.	3.4	116
49	A comparative study of 'isometric' points for anterior cruciate ligament graft attachment. Knee Surgery, Sports Traumatology, Arthroscopy, 2001, 9, 28-33.	4.2	114
50	Anatomy of the lateral retinaculum of the knee. Journal of Bone and Joint Surgery: British Volume, 2008, 90-B, 527-534.	3.4	114
51	An anatomical study of meniscal allograft sizing. Knee Surgery, Sports Traumatology, Arthroscopy, 2004, 12, 130-135.	4.2	112
52	Double-Bundle "Anatomic―Anterior Cruciate Ligament Reconstruction: A Cadaveric Study of Tunnel Positioning With a Transtibial Technique. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2007, 23, 7-13.	2.7	112
53	Loading of the two bundles of the posterior cruciate ligament: An analysis of bundle function in A-P drawer. Journal of Biomechanics, 1996, 29, 873-879.	2.1	110
54	Biomechanics of the menisci of the knee. Orthopaedics and Trauma, 2008, 22, 193-201.	0.3	109

#	Article	IF	CITATIONS
55	Biomechanics of rotational instability and anatomic anterior cruciate ligament reconstruction. Operative Techniques in Orthopaedics, 2005, 15, 29-35.	0.1	108
56	The effects of lateral meniscal allograft transplantation techniques on tibio-femoral contact pressures. Knee Surgery, Sports Traumatology, Arthroscopy, 2008, 16, 553-560.	4.2	107
57	Lateral force–displacement behaviour of the human patella and its variation with knee flexion — a biomechanical study in vitro. Journal of Biomechanics, 1998, 31, 1147-1152.	2.1	103
58	Iliotibial band tension affects patellofemoral and tibiofemoral kinematics. Journal of Biomechanics, 2009, 42, 1539-1546.	2.1	103
59	The capsular ligaments provide more hip rotational restraint than the acetabular labrum and the ligamentum teres. Bone and Joint Journal, 2015, 97-B, 484-491.	4.4	102
60	Standardisation of the description of patellofemoral motion and comparison between different techniques. Knee Surgery, Sports Traumatology, Arthroscopy, 2002, 10, 184-193.	4.2	101
61	In vitro testing protocols for the cruciate ligaments and ligament reconstructions. Knee Surgery, Sports Traumatology, Arthroscopy, 1998, 6, S70-S76.	4.2	100
62	The effect of femoral attachment location on anterior cruciate ligament reconstruction: graft tension patterns and restoration of normal anterior?posterior laxity patterns. Knee Surgery, Sports Traumatology, Arthroscopy, 2005, 13, 92-100.	4.2	100
63	Biomechanical Comparisons of Knee Stability After Anterior Cruciate Ligament Reconstruction Between 2 Clinically Available Transtibial Procedures. American Journal of Sports Medicine, 2010, 38, 1349-1358.	4.2	98
64	The cartilaginous and osseous geometry of the femoral trochlear groove. Knee Surgery, Sports Traumatology, Arthroscopy, 2004, 12, 300-6.	4.2	97
65	Changes in Knee Kinematics Reflect the Articular Geometry after Arthroplasty. Clinical Orthopaedics and Related Research, 2008, 466, 2491-2499.	1.5	97
66	Tensile strength of the medial patellofemoral ligament before and after repair or reconstruction. Journal of Bone and Joint Surgery: British Volume, 2005, 87, 36-40.	3.4	97
67	International Meniscus Reconstruction Experts Forum (IMREF) 2015 Consensus Statement on the Practice of Meniscal Allograft Transplantation. American Journal of Sports Medicine, 2017, 45, 1195-1205.	4.2	95
68	A Biomechanical Evaluation Of Suture Anchors In Repair Of The Rotator Cuff. Journal of Bone and Joint Surgery: British Volume, 1997, 79, 458-461.	3.4	95
69	The meniscofemoral ligaments: secondary restraints to the posterior drawer. Journal of Bone and Joint Surgery: British Volume, 2003, 85-B, 765-773.	3.4	94
70	The Effect of Tibial Tuberosity Medialization and Lateralization on Patellofemoral Joint Kinematics, Contact Mechanics, and Stability. American Journal of Sports Medicine, 2015, 43, 186-194.	4.2	94
71	Incidence and Mechanism of the Pivot Shift. Clinical Orthopaedics and Related Research, 1999, 363, 219???231.	1.5	91
72	Fixation of the graft in reconstruction of the anterior cruciate ligament. Journal of Bone and Joint Surgery: British Volume, 2005, 87-B, 593-603.	3.4	91

#	Article	IF	CITATIONS
73	The Geometry of the Trochlear Groove. Clinical Orthopaedics and Related Research, 2010, 468, 782-788.	1.5	91
74	The effect of femoral component rotation on the kinematics of the tibiofemoral and patellofemoral joints after total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 2011, 19, 1479-1487.	4.2	87
75	Effect of Medial Patellofemoral Ligament Reconstruction Method on Patellofemoral Contact Pressures and Kinematics. American Journal of Sports Medicine, 2016, 44, 1186-1194.	4.2	87
76	Meniscofemoral ligaments revisited. Journal of Bone and Joint Surgery: British Volume, 2002, 84, 846-851.	3.4	86
77	A review of the function and biomechanics of the meniscofemoral ligaments. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2003, 19, 161-171.	2.7	85
78	The Role of Fibers in the Femoral Attachment of the Anterior Cruciate Ligament in Resisting Tibial Displacement. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2015, 31, 435-444.	2.7	81
79	Persistence of the Mini Pivot Shift after Anatomically Placed Anterior Cruciate Ligament Reconstruction. Clinical Orthopaedics and Related Research, 2007, 457, 203-209.	1.5	80
80	Contributions of the anterolateral complex and the anterolateral ligament to rotatory knee stability in the setting of ACL Injury: a roundtable discussion. Knee Surgery, Sports Traumatology, Arthroscopy, 2017, 25, 997-1008.	4.2	76
81	The contribution of the medial retinaculum and quadriceps muscles to patellar lateral stability—an in-vitro study. Knee, 2004, 11, 89-94.	1.6	75
82	The kinematics and stability of singleâ€radius versus multiâ€radius femoral components related to Midâ€range instability after TKA. Journal of Orthopaedic Research, 2013, 31, 53-58.	2.3	75
83	Analysis of bone–prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions. Journal of Biomechanics, 2010, 43, 1074-1080.	2.1	74
84	The Ability of Medial Patellofemoral Ligament Reconstruction to Correct Patellar Kinematics and Contact Mechanics in the Presence of a Lateralized Tibial Tubercle. American Journal of Sports Medicine, 2015, 43, 2198-2207.	4.2	73
85	Forces in the Knee Joint Whilst Rising from Normal and Motorized Chairs. Engineering in Medicine, 1979, 8, 33-40.	0.6	72
86	Anterior cruciate ligament replacement. Knee stability and the effects of implants. Journal of Bone and Joint Surgery: British Volume, 1989, 71-B, 819-824.	3.4	71
87	Biomechanics of a double prosthetic ligament in the anterior cruciate deficient knee. Journal of Bone and Joint Surgery: British Volume, 1990, 72-B, 1038-1043.	3.4	70
88	A comparison of five tibial-fixation systems in hamstring-graft anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 2004, 12, 391-7.	4.2	68
89	The Effects of Anterolateral Tenodesis on Tibiofemoral Contact Pressures and Kinematics. American Journal of Sports Medicine, 2017, 45, 3081-3088.	4.2	68
90	Repair of cartilage lesions using biological implants. A comparative histological and biomechanical study in goats. Journal of Bone and Joint Surgery: British Volume, 1991, 73-B, 57-64.	3.4	66

#	Article	IF	CITATIONS
91	Unicompartmental Knee Arthroplasty Enables Near Normal Gait at Higher Speeds, Unlike Total Knee Arthroplasty. Journal of Arthroplasty, 2013, 28, 176-178.	3.1	66
92	Accuracy of an electromagnetic measurement device and application to the measurement and description of knee joint motion. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1998, 212, 347-355.	1.8	65
93	Control of Laxity in Knees with Combined Posterior Cruciate Ligament and Posterolateral Corner Deficiency. American Journal of Sports Medicine, 2008, 36, 487-494.	4.2	65
94	The structural properties of the lateral retinaculum and capsular complex of the knee. Journal of Biomechanics, 2009, 42, 2323-2329.	2.1	65
95	Tribological properties of PVA/PVP blend hydrogels against articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 36-45.	3.1	65
96	The Effects of Different Tensioning Strategies on Knee Laxity and Graft Tension after Double-Bundle Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2007, 35, 2083-2090.	4.2	62
97	The effect of overstuffing the patellofemoral joint on the extensor retinaculum of the knee. Knee Surgery, Sports Traumatology, Arthroscopy, 2009, 17, 1211-1216.	4.2	62
98	Quantifying the pivot shift test: a systematic review. Knee Surgery, Sports Traumatology, Arthroscopy, 2013, 21, 767-783.	4.2	62
99	Clinical biomechanics of instability related to total knee arthroplasty. Clinical Biomechanics, 2014, 29, 119-128.	1.2	61
100	The scientific rationale for lateral tenodesis augmentation of intra-articular ACL reconstruction using a modified â€~Lemaire' procedure. Knee Surgery, Sports Traumatology, Arthroscopy, 2017, 25, 1339-1344.	4.2	61
101	The effect on patellofemoral joint stability of selective cutting of lateral retinacular and capsular structures. Journal of Biomechanics, 2009, 42, 291-296.	2.1	60
102	PCL reconstruction. Journal of Bone and Joint Surgery: British Volume, 1998, 80-B, 173-179.	3.4	58
103	Total ankle replacement design and positioning affect implant-bone micromotion and bone strains. Medical Engineering and Physics, 2017, 42, 80-90.	1.7	58
104	Meniscofemoral ligaments—structural and material properties. Journal of Biomechanics, 2002, 35, 1623-1629.	2.1	55
105	The medial ligaments and the ACL restrain anteromedial laxity of the knee. Knee Surgery, Sports Traumatology, Arthroscopy, 2020, 28, 3700-3708.	4.2	55
106	The effect of screw length and position on fixation of four-stranded hamstring grafts for anterior cruciate ligament reconstruction. Knee, 2003, 10, 97-102.	1.6	53
107	Sectioning the medial patellofemoral ligament alters patellofemoral joint kinematics and contact mechanics. Journal of Orthopaedic Research, 2013, 31, 1423-1429.	2.3	53
108	Anteroposterior Laxity After Bicruciate-Retaining Total Knee Arthroplasty Is Closer to the Native Knee Than ACL-Resecting TKA: A Biomechanical Cadaver Study. Journal of Arthroplasty, 2015, 30, 2315-2319.	3.1	53

#	Article	IF	CITATIONS
109	The strength of artificial ligament anchorages. A comparative experimental study. Journal of Bone and Joint Surgery: British Volume, 1988, 70-B, 397-403.	3.4	52
110	Patellofemoral joint kinematics: The circular path of the patella around the trochlear axis. Journal of Orthopaedic Research, 2010, 28, 589-594.	2.3	52
111	Passive tension and gap formation of rotator cuff repairs. Journal of Shoulder and Elbow Surgery, 2004, 13, 664-667.	2.6	51
112	A comparison of modified Larson and â€~anatomic' posterolateral corner reconstructions in knees with combined PCL and posterolateral corner deficiency. Knee Surgery, Sports Traumatology, Arthroscopy, 2009, 17, 305-312.	4.2	49
113	Length-change patterns of the medial collateral ligament and posterior oblique ligament in relation to their function and surgery. Knee Surgery, Sports Traumatology, Arthroscopy, 2020, 28, 3720-3732.	4.2	49
114	The Width:thickness Ratio of the Patella. Clinical Orthopaedics and Related Research, 2008, 466, 1198-1203.	1.5	47
115	Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. Journal of Bone and Joint Surgery: British Volume, 2002, 84-B, 1075-1081.	3.4	46
116	RSA Can Measure ACL Graft Stretching and Migration. Clinical Orthopaedics and Related Research, 2006, 448, 139-145.	1.5	44
117	Anterolateral knee biomechanics. Knee Surgery, Sports Traumatology, Arthroscopy, 2017, 25, 1015-1023.	4.2	44
118	A BIOMECHANICAL EVALUATION OF SUTURE ANCHORS IN REPAIR OF THE ROTATOR CUFF. Journal of Bone and Joint Surgery: British Volume, 1997, 79-B, 458-461.	3.4	43
119	Lack of evidence to support present medial release methods in total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 2014, 22, 3100-3112.	4.2	43
120	Incidence and mechanism of the pivot shift. An in vitro study. Clinical Orthopaedics and Related Research, 1999, , 219-31.	1.5	43
121	Length change patterns of the extensor retinaculum and the effect of total knee replacement. Journal of Orthopaedic Research, 2009, 27, 865-870.	2.3	42
122	Downhill walking gait pattern discriminates between types of knee arthroplasty: improved physiological knee functionality in UKA versus TKA. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23, 1748-1755.	4.2	42
123	The envelope of passive motion allowed by the capsular ligaments of the hip. Journal of Biomechanics, 2015, 48, 3803-3809.	2.1	42
124	Meniscofemoral ligaments revisited. Journal of Bone and Joint Surgery: British Volume, 2002, 84-B, 846-851.	3.4	41
125	Length-change patterns of the collateral ligaments after total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 2012, 20, 1349-1356.	4.2	41
126	The bone attachments of the medial collateral and posterior oblique ligaments are defined anatomically and radiographically. Knee Surgery, Sports Traumatology, Arthroscopy, 2020, 28, 3709-3719.	4.2	40

#	Article	IF	CITATIONS
127	Strain-rate sensitivity of the lateral collateral ligament of the knee. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 41, 261-270.	3.1	39
128	Active Patellar Tracking Measurement. American Journal of Sports Medicine, 2004, 32, 1209-1217.	4.2	38
129	Biomechanics of Patellofemoral Joint Prostheses. Clinical Orthopaedics and Related Research, 2005, &NA, 20-29.	1.5	38
130	Biomechanical Analysis of Knee Laxity With Isolated Anteromedial or Posterolateral Bundle–Deficient Anterior Cruciate Ligament. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2014, 30, 335-343.	2.7	38
131	Digital volume correlation and micro-CT: An in-vitro technique for measuring full-field interface micromotion around polyethylene implants. Journal of Biomechanics, 2015, 48, 3447-3454.	2.1	38
132	Biomechanical Comparisons Between 4-Strand and Modified Larson 2-Strand Procedures for Reconstruction of the Posterolateral Corner of the Knee. American Journal of Sports Medicine, 2011, 39, 1462-1469.	4.2	37
133	Patellar thickness and lateral retinacular release affects patellofemoral kinematics in total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 2014, 22, 526-533.	4.2	37
134	A comparative study of single-and double-bundle ACL reconstructions in sheep. Knee Surgery, Sports Traumatology, Arthroscopy, 1994, 2, 94-99.	4.2	36
135	Patellar resection during total knee arthroplasty: effect on bone strain and fracture risk. Knee Surgery, Sports Traumatology, Arthroscopy, 2005, 13, 203-208.	4.2	35
136	Review: femoral tunnel placement for PCL reconstruction in relation to the PCL fibre bundle attachments. Knee Surgery, Sports Traumatology, Arthroscopy, 2009, 17, 652-659.	4.2	35
137	Can we define envelope of laxity during navigated knee arthroplasty?. Knee Surgery, Sports Traumatology, Arthroscopy, 2014, 22, 1736-1743.	4.2	35
138	Kinematic behaviour and soft tissue management in guided motion total knee replacement. Knee Surgery, Sports Traumatology, Arthroscopy, 2014, 22, 3074-3082.	4.2	34
139	The fixation strength of a novel ACL soft-tissue graft fixation device compared with conventional interference screws: a biomechanical study in vitro. Knee Surgery, Sports Traumatology, Arthroscopy, 2011, 19, 559-567.	4.2	33
140	A morphometric study of normal and varus knees. Knee Surgery, Sports Traumatology, Arthroscopy, 2014, 22, 2891-2899.	4.2	33
141	The Role of the Anterolateral Structures and the ACL in Controlling Laxity of the Intact and ACL-Deficient Knee: Response. American Journal of Sports Medicine, 2016, 44, NP15-NP18.	4.2	33
142	Prediction of structural failure of tibial bone models under physiological loads: Effect of CT density–modulus relationships. Medical Engineering and Physics, 2014, 36, 991-997.	1.7	31
143	Properties and Function of the Medial Patellofemoral Ligament: A Systematic Review. American Journal of Sports Medicine, 2020, 48, 754-766.	4.2	31
144	The role of PCL reconstruction in knees with combined PCL and posterolateral corner deficiency. Knee Surgery, Sports Traumatology, Arthroscopy, 2008, 16, 104-111.	4.2	30

#	Article	IF	CITATIONS
145	Rotator cuff repair failure inÂvivo: a radiostereometric measurement study. Journal of Shoulder and Elbow Surgery, 2011, 20, 1194-1199.	2.6	29
146	A comparative study of the effects of different bioactive fillers in PLGA matrix composites and their suitability as bone substitute materials: A thermo-mechanical and in vitro investigation. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50, 277-289.	3.1	29
147	Clinically relevant biomechanics of the knee capsule and ligaments. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23, 2789-2796.	4.2	29
148	The infrapatellar fat pad is a dynamic and mobile structure, which deforms during knee motion, and has proximal extensions which wrap around the patella. Knee Surgery, Sports Traumatology, Arthroscopy, 2018, 26, 3515-3524.	4.2	29
149	The mechanical properties of human flexor tendons in relation to artificial tendons. Journal of Hand Surgery, 1985, 10, 331-336.	0.8	28
150	Tribological evaluation of biomedical polycarbonate urethanes against articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 82, 394-402.	3.1	28
151	The meniscofemoral ligaments: secondary restraints to the posterior drawer. Analysis of anteroposterior and rotary laxity in the intact and posterior-cruciate-deficient knee. Journal of Bone and Joint Surgery: British Volume, 2003, 85, 765-73.	3.4	28
152	Review on tension in the natural and reconstructed anterior cruciate ligament. Knee Surgery, Sports Traumatology, Arthroscopy, 1994, 2, 192-202.	4.2	27
153	Biomechanics of the Anterolateral Structures of the Knee. Clinics in Sports Medicine, 2018, 37, 21-31.	1.8	27
154	A Technique of Staged Lateral Release to Correct Patellar Tracking in Total Knee Arthroplasty. Journal of Arthroplasty, 2009, 24, 735-742.	3.1	26
155	The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint. Journal of Strain Analysis for Engineering Design, 2017, 52, 12-23.	1.8	25
156	The transpatellar approach for the knee in the laboratory. Journal of Orthopaedic Research, 2009, 27, 330-334.	2.3	24
157	How does laxity after single radius total knee arthroplasty compare with the native knee?. Journal of Orthopaedic Research, 2014, 32, 1208-1213.	2.3	24
158	ACL reconstruction combined with lateral monoloop tenodesis can restore intact knee laxity. Knee Surgery, Sports Traumatology, Arthroscopy, 2020, 28, 1159-1168.	4.2	24
159	The effect of femoral component rotation on the extensor retinaculum of the knee. Journal of Orthopaedic Research, 2010, 28, 1136-1141.	2.3	23
160	Validation of multiple subject-specific finite element models of unicompartmental knee replacement. Medical Engineering and Physics, 2013, 35, 1457-1464.	1.7	23
161	The superficial medial collateral ligament is the primary medial restraint to knee laxity after cruciate-retaining or posterior-stabilised total knee arthroplasty: effects of implant type and partial release. Knee Surgery, Sports Traumatology, Arthroscopy, 2016, 24, 2646-2655.	4.2	22
162	A cadaveric model to evaluate the effect of unloading the medial quadriceps on patellar tracking and patellofemoral joint pressure and stability. Journal of Experimental Orthopaedics, 2018, 5, 34.	1.8	22

#	Article	IF	CITATIONS
163	Biomechanical Assessment of a Distally Fixed Lateral Extra-articular Augmentation Procedure in the Treatment of Anterolateral Rotational Laxity of the Knee. American Journal of Sports Medicine, 2019, 47, 2102-2109.	4.2	21
164	Isolated popliteus tendon injury does not lead to abnormal laxity in posterior-stabilised total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23, 1763-1769.	4.2	19
165	Biomechanical Aspects of the Elbow: Joint Forces Related to Prosthesis Design. Engineering in Medicine, 1981, 10, 65-68.	0.6	18
166	Knee Joint Line Obliquity Causes Tibiofemoral Subluxation That Alters Contact Areas and Meniscal Loading. American Journal of Sports Medicine, 2021, 49, 2351-2360.	4.2	18
167	A quantitative technique to create a femoral tunnel at the averaged center of the anteromedial bundle attachment in anatomic double-bundle anterior cruciate ligament reconstruction. BMC Musculoskeletal Disorders, 2013, 14, 189.	1.9	17
168	Dynamic augmentation restores anterior tibial translation in ACL suture repair: a biomechanical comparison of non-, static and dynamic augmentation techniques. Knee Surgery, Sports Traumatology, Arthroscopy, 2018, 26, 2986-2996.	4.2	17
169	Failure mechanisms of polyester fiber anterior cruciate ligament implants: A human retrieval and laboratory study. , 1999, 48, 534-539.		16
170	Biomechanical comparison of graft structures in anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 2017, 25, 559-568.	4.2	16
171	Method for visualising and measuring the position of the femoral attachment of the ACL and ACL grafts in experimental work. Journal of Biomechanics, 1998, 31, 387-390.	2.1	15
172	lliotibial band tension reduces patellar lateral stability. Journal of Orthopaedic Research, 2009, 27, 335-339.	2.3	15
173	No difference in patellar tracking between symmetrical and asymmetrical femoral component designs in TKA. Knee Surgery, Sports Traumatology, Arthroscopy, 2014, 22, 534-542.	4.2	15
174	Medial Collateral Ligament Reconstruction for Anteromedial Instability of the Knee: A Biomechanical Study In Vitro. American Journal of Sports Medicine, 2022, 50, 1823-1831.	4.2	15
175	Femoral articular geometry and patellofemoral stability. Knee, 2017, 24, 555-563.	1.6	14
176	The Role of Fibers Within the Tibial Attachment of the Anterior Cruciate Ligament in Restraining Tibial Displacement. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2019, 35, 2101-2111.	2.7	14
177	Strength of Interference Screw Fixation to Cuboid vs Pulvertaft Weave to Peroneus Brevis for Tibialis Posterior Tendon Transfer for Foot Drop. Foot and Ankle International, 2018, 39, 858-864.	2.3	13
178	A method to quantify alteration of knee kinematics caused by changes of TKR positioning. Journal of Biomechanics, 2009, 42, 665-670.	2.1	12
179	Rotator cuff–sparing approaches for glenohumeral joint access: an anatomic feasibility study. Journal of Shoulder and Elbow Surgery, 2017, 26, 512-520.	2.6	12
180	It is safe and effective to use all inside meniscal repair devices for posteromedial meniscal â€~ramp' lesions. Knee Surgery, Sports Traumatology, Arthroscopy, 2018, 26, 2310-2316.	4.2	12

#	Article	IF	CITATIONS
181	Effect of Anterolateral Complex Sectioning and Tenodesis on Patellar Kinematics and Patellofemoral Joint Contact Pressures. American Journal of Sports Medicine, 2018, 46, 2922-2928.	4.2	12
182	A constrained-condylar fixed-bearing total knee arthroplasty is stabilised by the medial soft tissues. Knee Surgery, Sports Traumatology, Arthroscopy, 2021, 29, 659-667.	4.2	12
183	A Triple-Strand Anatomic Medial Collateral Ligament Reconstruction Restores Knee Stability More Completely Than a Double-Strand Reconstruction: A Biomechanical Study In Vitro. American Journal of Sports Medicine, 2022, 50, 1832-1842.	4.2	12
184	THE INFLUENCE OF TIBIAL PROSTHESIS DESIGN FEATURES ON STRESSES RELATED TO ASEPTIC LOOSENING AND STRESS SHIELDING. Journal of Mechanics in Medicine and Biology, 2011, 11, 55-72.	0.7	11
185	Strain rate dependency of fractures of immature bone. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66, 68-76.	3.1	11
186	Posterior capsular release is a biomechanically safe procedure to perform in total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 2019, 27, 1587-1594.	4.2	11
187	The medial collateral ligament: the neglected ligament. Knee Surgery, Sports Traumatology, Arthroscopy, 2020, 28, 3698-3699.	4.2	11
188	Total knee arthroplasty reduces knee extension torque in-vitro and patellofemoral arthroplasty does not. Journal of Biomechanics, 2020, 104, 109739.	2.1	11
189	Mechanical testing of intra-articular tissues. Relating experiments to physiological function. Orthopaedics and Trauma, 2008, 22, 341-348.	0.3	10
190	The extensor efficiency of unicompartmental, bicompartmental, and total knee arthroplasty. Bone and Joint Research, 2021, 10, 1-9.	3.6	10
191	Stability of small pegs for cementless implant fixation. Journal of Orthopaedic Research, 2017, 35, 2765-2772.	2.3	9
192	Partial and Combined Partial Knee Arthroplasty: Greater Anterior-Posterior Stability Than Posterior Cruciate–Retaining Total Knee Arthroplasty. Journal of Arthroplasty, 2021, 36, 3765-3772.e4.	3.1	9
193	Development of the apex polyester fibre cruciate ligament implant. Clinical Materials, 1994, 15, 51-60.	0.5	8
194	Patellofemoral Joint Biomechanics. , 2005, , 37-53.		8
195	Measurement of migration of soft tissue by modified Roentgen stereophotogrammetric analysis (RSA): validation of a new technique to monitor rotator cuff tears. Journal of Medical Engineering and Technology, 2010, 34, 159-165.	1.4	8
196	Variable bone mineral density reductions post-unicompartmental knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23, 2230-2236.	4.2	8
197	Parametric analysis of glenoid implant design and fixation type. Journal of Orthopaedic Research, 2017, 35, 775-784.	2.3	8
198	Ligamentous and capsular restraints to anterior-posterior and superior-inferior laxity of the acromioclavicular joint: a biomechanical study. Journal of Shoulder and Elbow Surgery, 2021, 30, 1251-1256.	2.6	8

#	Article	IF	CITATIONS
199	Patello-femoral joint replacement. Orthopaedics and Trauma, 1999, 13, 64-70.	0.3	7
200	Influence of increasing construct constraint in the presence of posterolateral deficiency at knee replacement: A biomechanical study. Journal of Orthopaedic Research, 2016, 34, 427-434.	2.3	7
201	An in vitro analysis of medial structures and a medial soft tissue reconstruction in a constrained condylar total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 2017, 25, 2646-2655.	4.2	7
202	Pre-clinical assessment of total knee replacement anterior-posterior constraint. Journal of Biomechanics, 2018, 73, 153-160.	2.1	7
203	Flexor digitorum longus tendon transfer to the navicular: tendon-to-tendon repair is stronger compared with interference screw fixation. Knee Surgery, Sports Traumatology, Arthroscopy, 2020, 28, 320-325.	4.2	7
204	An Anterior Cruciate Ligament In Vitro Rupture Model Based on Clinical Imaging. American Journal of Sports Medicine, 2021, 49, 2387-2395.	4.2	7
205	Bi-unicondylar arthroplasty. Bone and Joint Research, 2021, 10, 723-733.	3.6	7
206	Anatomy and Biomechanics of the Posterior Cruciate Ligament. Sports Medicine and Arthroscopy Review, 1999, 7, 225-234.	2.3	6
207	Neural Structures within Human Meniscofemoral Ligaments: A Cadaveric Study. ISRN Anatomy, 2014, 2014, 1-6.	0.5	6
208	The effect of knee extensor open kinetic chain resistance training in the ACL-injured knee. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23, 3168-3177.	4.2	6
209	Lateral soft-tissue structures contribute to cruciate-retaining total knee arthroplasty stability. Journal of Orthopaedic Research, 2017, 35, 1902-1909.	2.3	6
210	Surgical anatomy of the foot and ankle. Knee Surgery, Sports Traumatology, Arthroscopy, 2010, 18, 555-556.	4.2	5
211	Isometric placement of the augmentation braid is not attained reliably in contemporary ACL suture repair. Knee, 2020, 27, 111-123.	1.6	5
212	Redesigning Metal Interference Screws Can Improve Ease of Insertion While Maintaining Fixation of Soft-Tissue Anterior Cruciate Ligament Reconstruction Grafts. Arthroscopy, Sports Medicine, and Rehabilitation, 2020, 2, e137-e144.	1.7	5
213	Systematic review of tendon transfers in the foot and ankle using interference screw fixation: Outcomes and safety of early versus standard postoperative rehabilitation. Foot and Ankle Surgery, 2022, 28, 166-175.	1.7	5
214	Variation in the patellar tendon moment arm identified with an improved measurement framework. Journal of Orthopaedic Research, 2022, 40, 799-807.	2.3	5
215	Treatment of the Fixation Surface Improves Glenoid Prosthesis Longevity in vitro. Journal of Biomechanics, 2017, 61, 81-87.	2.1	4
216	Effect of patellofemoral pain on foot posture and walking kinematics. Gait and Posture, 2019, 70, 361-369.	1.4	4

#	Article	IF	CITATIONS
217	The Medial Patellofemoral Ligament. , 2014, , 113-125.		4
218	ACL graft compression: a method to allow reduced tunnel sizes in ACL reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 2018, 26, 2430-2437.	4.2	3
219	Reduced tibial strain-shielding with extraosseous total knee arthroplasty revision system. Medical Engineering and Physics, 2018, 62, 22-28.	1.7	3
220	Editorial Commentary: Taking a Wider View During Anterior Cruciate Ligament Reconstruction? The Case for Doing More Than Just Reconstructing the Anterior Cruciate Ligament Itself. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2019, 35, 1484-1485.	2.7	3
221	Acromioclavicular joint reconstruction implants have differing ability to restore horizontal and vertical plane stability. Knee Surgery, Sports Traumatology, Arthroscopy, 2021, 29, 3902-3909.	4.2	3
222	The anatomy and biomechanics of the medial collateral ligament and posteromedial corner of the knee. , 2012, , 23-30.		2
223	Physiology: Biomechanics. , 2016, , 35-45.		2
224	The anterolateral aspect of the knee: the state of play. Knee Surgery, Sports Traumatology, Arthroscopy, 2017, 25, 989-990.	4.2	2
225	Cadaveric study validating in vitro monitoring techniques to measure the failure mechanism of glenoid implants against clinical CT. Journal of Orthopaedic Research, 2018, 36, 2524-2532.	2.3	2
226	Strength of interference screw fixation of meniscus prosthesis matches native meniscus attachments. Knee Surgery, Sports Traumatology, Arthroscopy, 2022, 30, 2259-2266.	4.2	2
227	Validity of repeated-measures analyses of in vitro arthroplasty kinematics and kinetics. Journal of Biomechanics, 2021, 129, 110669.	2.1	1
228	Bone adaptation to a polyester fiber anterior cruciate ligament replacement. Journal of Long-Term Effects of Medical Implants, 1999, 9, 153-68.	0.7	1
229	Basic FGF Mediates ERK Activation in Articular Cartilage Explants upon Cyclical Loading. Clinical Science, 2003, 104, 46P-47P.	0.0	Ο
230	Reply to O. Cebesoy's comments on the paper "Effects of lateral retinacular release on the lateral stability of the patella― Knee Surgery, Sports Traumatology, Arthroscopy, 2007, 15, 826-827.	4.2	0
231	Graft tunnel positioning during PCL reconstruction. , 2012, , 387-393.		Ο
232	1 Anatomy and Biomechanics of the Natural Knee and After TKR. , 2015, , 3-15.		0
233	Scientific Basis and Surgical Technique for Iliotibial Band Tenodesis Combined with ACL Reconstruction. , 2017, , 393-404.		0
234	Biomechanical Role of Lateral Structures in Controlling Anterolateral Rotatory Laxity: The Iliotibial Tract. Operative Techniques in Orthopaedics, 2017, 27, 96-101.	0.1	0

#	Article	IF	CITATIONS
235	Novel curved surface preparation technique for knee resurfacing. Medical Engineering and Physics, 2017, 49, 89-93.	1.7	0
236	The Envelope of Laxity of the Pivot Shift Test. , 2017, , 223-234.		0
237	Femoral Tunnel Placement to Restore Normal Knee Laxity after Anterior Cruciate Ligament Reconstruction. , 2018, , 188-193.e1.		0
238	Letter to the Editor on "Anterior cruciate ligament repair versus reconstruction: A kinematic analysis― Knee, 2020, 27, 609-610.	1.6	0
239	Femoral Tunnel Placement to Restore Normal Knee Laxity After Anterior Cruciate Ligament Reconstruction. , 2008, , 140-146.		0
240	The Use of Computer-Assisted Surgery During Patellofemoral Arthroplasty. , 2013, , 143-158.		0
241	ICL-15 Cartilage Lesion and the Patellofemoral Joint. , 2014, , 127-138.		0
242	Length Change Patterns of the Medial Ligaments of the Knee Joint. The Proceedings of Mechanical Engineering Congress Japan, 2019, 2019, J04223P.	0.0	0