
Lars C Pedersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4544480/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From Steroid and Drug Metabolism to Glycobiology, Using Sulfotransferase Structures to Understand and Tailor Function. Drug Metabolism and Disposition, 2022, 50, 1027-1041.	3.3	8
2	Structural Insights into the Specificity of 8-Oxo-7,8-dihydro-2′-deoxyguanosine Bypass by Family X DNA Polymerases. Genes, 2022, 13, 15.	2.4	2
3	Emerging chemical and biochemical tools for studying 3- <i>O</i> -sulfated heparan sulfate. American Journal of Physiology - Cell Physiology, 2022, 322, C1166-C1175.	4.6	6
4	Analysis of diverse double-strand break synapsis with Polλ reveals basis for unique substrate specificity in nonhomologous end-joining. Nature Communications, 2022, 13, .	12.8	7
5	Deciphering the substrate recognition mechanisms of the heparan sulfate 3- <i>O</i> -sulfotransferase-3. RSC Chemical Biology, 2021, 2, 1239-1248.	4.1	6
6	The mosquito protein AEG12 displays both cytolytic and antiviral properties via a common lipid transfer mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
7	Structural and Substrate Specificity Analysis of 3- <i>O</i> -Sulfotransferase Isoform 5 to Synthesize Heparan Sulfate. ACS Catalysis, 2021, 11, 14956-14966.	11.2	5
8	Ligand binding characteristics of the Ku80 von Willebrand domain. DNA Repair, 2020, 85, 102739.	2.8	14
9	Using engineered 6- <i>O</i> -sulfotransferase to improve the synthesis of anticoagulant heparin. Organic and Biomolecular Chemistry, 2020, 18, 8094-8102.	2.8	7
10	Structural snapshots of human DNA polymerase μ engaged on a DNA double-strand break. Nature Communications, 2020, 11, 4784.	12.8	6
11	DNA polymerase mu: An inflexible scaffold for substrate flexibility. DNA Repair, 2020, 93, 102932.	2.8	2
12	The Structural Basis for Nonsteroidal Anti-Inflammatory Drug Inhibition of Human Dihydrofolate Reductase. Journal of Medicinal Chemistry, 2020, 63, 8314-8324.	6.4	7
13	A ubiquitin-like domain is required for stabilizing the N-terminal ATPase module of human SMCHD1. Communications Biology, 2019, 2, 255.	4.4	8
14	Unexpected behavior of DNA polymerase Mu opposite template 8-oxo-7,8-dihydro-2′-guanosine. Nucleic Acids Research, 2019, 47, 9410-9422.	14.5	8
15	Evaluation of the allergenic activity of the Glutathione Transferase from Blomia tropicalis (Blo t 8) in a mouse model of airway inflammation. Journal of Allergy and Clinical Immunology, 2019, 143, AB187.	2.9	2
16	Structural Analysis of Recent Allergen-Antibody Complexes and Future Directions. Current Allergy and Asthma Reports, 2019, 19, 17.	5.3	6
17	Structural and functional consequences of SMCHD1 mutations associated with arhinia and muscular dystrophy. FASEB Journal, 2019, 33, 493.5.	O.5	0
18	Probing Dominant Negative Behavior of Glucocorticoid Receptor <i>β</i> through a Hybrid Structural and Biochemical Approach. Molecular and Cellular Biology, 2018, 38, .	2.3	8

#	Article	IF	CITATIONS
19	Interaction of the phosphorylated DNA-binding domain in nuclear receptor CAR with its ligand-binding domain regulates CAR activation. Journal of Biological Chemistry, 2018, 293, 333-344.	3.4	20
20	Variations in nuclear localization strategies among pol X family enzymes. Traffic, 2018, 19, 723-735.	2.7	3
21	Structures of DNA-bound human ligase IV catalytic core reveal insights into substrate binding and catalysis. Nature Communications, 2018, 9, 2642.	12.8	37
22	Variations in Nuclear Localization Strategies Among Pol X Family Enzymes. FASEB Journal, 2018, 32, 786.11.	0.5	0
23	Activation-induced deoxycytidine deaminase: Structural basis for favoring WRC hot motif specificities unique among APOBEC family members. DNA Repair, 2017, 54, 8-12.	2.8	15
24	Time-lapse crystallography snapshots of a double-strand break repair polymerase in action. Nature Communications, 2017, 8, 253.	12.8	54
25	A Structural Basis for Biguanide Activity. Biochemistry, 2017, 56, 4786-4798.	2.5	20
26	Structure Based Substrate Specificity Analysis of Heparan Sulfate 6- <i>O</i> -Sulfotransferases. ACS Chemical Biology, 2017, 12, 73-82.	3.4	36
27	Structural accommodation of ribonucleotide incorporation by the DNA repair enzyme polymerase Mu. Nucleic Acids Research, 2017, 45, 9138-9148.	14.5	36
28	Characterization of the APLF FHA–XRCC1 phosphopeptide interaction and its structural and functional implications. Nucleic Acids Research, 2017, 45, 12374-12387.	14.5	9
29	Serological, genomic and structural analyses of the major mite allergen Der p 23. Clinical and Experimental Allergy, 2016, 46, 365-376.	2.9	69
30	Structural, Serological, and Genomic Analyses of the Major Mite Allergen Der p 23. Journal of Allergy and Clinical Immunology, 2016, 137, AB267.	2.9	1
31	Structures of DNA Polymerase Mispaired DNA Termini Transitioning to Pre-catalytic Complexes Support an Induced-Fit Fidelity Mechanism. Structure, 2016, 24, 1863-1875.	3.3	30
32	Structural analysis of the activation-induced deoxycytidine deaminase required in immunoglobulin diversification. DNA Repair, 2016, 43, 48-56.	2.8	40
33	Structural characterization of the virulence factor Sda1 nuclease from <i>Streptococcus pyogenes</i> . Nucleic Acids Research, 2016, 44, 3946-3957.	14.5	19
34	Unfolding the HIV-1 reverse transcriptase RNase H domain – how to lose a molecular tug-of-war. Nucleic Acids Research, 2016, 44, 1776-1788.	14.5	10
35	Analysis of GST Allergen Cross-Reactivity in a North American Population for Molecular Diagnosis. Journal of Allergy and Clinical Immunology, 2015, 135, AB187.	2.9	1
36	Nuclear Localization of the DNA Repair Scaffold XRCC1: Uncovering the Functional Role of a Bipartite NLS. Scientific Reports, 2015, 5, 13405.	3.3	30

#	Article	IF	CITATIONS
37	100ÂYears later: Celebrating the contributions of x-ray crystallography to allergy and clinical immunology. Journal of Allergy and Clinical Immunology, 2015, 136, 29-37.e10.	2.9	33
38	Diversity Outbred Mice Identify Population-Based Exposure Thresholds and Genetic Factors that Influence Benzene-Induced Genotoxicity. Environmental Health Perspectives, 2015, 123, 237-245.	6.0	111
39	Creative template-dependent synthesis by human polymerase mu. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4530-6.	7.1	26
40	Role of Deacetylase Activity of N-Deacetylase/N-Sulfotransferase 1 in Forming N-Sulfated Domain in Heparan Sulfate. Journal of Biological Chemistry, 2015, 290, 20427-20437.	3.4	32
41	Analysis of glutathione S-transferase allergen cross-reactivity in a North American population: RelevanceAfor molecular diagnosis. Journal of Allergy and Clinical Immunology, 2015, 136, 1369-1377.	2.9	52
42	Crystallographic Analysis and Mimicking of Estradiol Binding: Pedersen et al. Respond. Environmental Health Perspectives, 2014, 122, A91-2.	6.0	0
43	Novel DNA Motif Binding Activity Observed In Vivo With an Estrogen Receptor α Mutant Mouse. Molecular Endocrinology, 2014, 28, 899-911.	3.7	42
44	Selective unfolding of one Ribonuclease H domain of HIV reverse transcriptase is linked to homodimer formation. Nucleic Acids Research, 2014, 42, 5361-5377.	14.5	25
45	Characterization of an anti-Bla g 1 scFv: Epitope mapping and cross-reactivity. Molecular Immunology, 2014, 59, 200-207.	2.2	6
46	Structure–Function Studies of DNA Polymerase λ. Biochemistry, 2014, 53, 2781-2792.	2.5	52
47	Structural characterization of the virulence factor nuclease A fromStreptococcus agalactiae. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2937-2949.	2.5	7
48	Sustained active site rigidity during synthesis by human DNA polymerase μ. Nature Structural and Molecular Biology, 2014, 21, 253-260.	8.2	57
49	The Molecular Basis of Peanut Allergy. Current Allergy and Asthma Reports, 2014, 14, 429.	5.3	58
50	Molecular Mechanism of Substrate Specificity for Heparan Sulfate 2-O-Sulfotransferase. Journal of Biological Chemistry, 2014, 289, 13407-13418.	3.4	39
51	Epitope Mapping Of An Anti-Bla g 1 ScFv Used For Cockroach Allergen Quantitation. Journal of Allergy and Clinical Immunology, 2014, 133, AB100.	2.9	0
52	Antigenic Analysis Of The Major Cockroach Allergen Bla g 5 and Its Dust Mite Homolog Der p 8. Journal of Allergy and Clinical Immunology, 2014, 133, AB100.	2.9	0
53	The Cockroach Allergen Bla g 1 Forms Alpha Helical Capsules with an Internal Lipid Binding Cavity: Implications for Allergenicity. Journal of Allergy and Clinical Immunology, 2013, 131, AB16.	2.9	0
54	Amino Acid Substitution in the Active Site of DNA Polymerase β Explains the Energy Barrier of the Nucleotidyl Transfer Reaction. Journal of the American Chemical Society, 2013, 135, 8078-8088.	13.7	40

#	Article	IF	CITATIONS
55	Stable RAGE-Heparan Sulfate Complexes Are Essential for Signal Transduction. ACS Chemical Biology, 2013, 8, 1611-1620.	3.4	71
56	The novel structure of the cockroach allergen Bla g 1 has implications for allergenicity and exposure assessment. Journal of Allergy and Clinical Immunology, 2013, 132, 1420-1426.e9.	2.9	64
57	The Natural Estrogenic Compound Diarylheptanoid (D3):In VitroMechanisms of Action andin VivoUterine Responses via Estrogen Receptorα. Environmental Health Perspectives, 2013, 121, 433-439.	6.0	13
58	Mimicking of Estradiol Binding by Flame Retardants and Their Metabolites: A Crystallographic Analysis. Environmental Health Perspectives, 2013, 121, 1194-1199.	6.0	82
59	Inhibitors of Streptococcus pneumoniae Surface Endonuclease EndA Discovered by High-Throughput Screening Using a PicoGreen Fluorescence Assay. Journal of Biomolecular Screening, 2013, 18, 247-257.	2.6	12
60	Structure-function analysis of ribonucleotide bypass by B family DNA replicases. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16802-16807.	7.1	42
61	The catalytic cycle for ribonucleotide incorporation by human DNA Pol λ. Nucleic Acids Research, 2012, 40, 7518-7527.	14.5	48
62	Dissecting the substrate recognition of 3- <i>O</i> -sulfotransferase for the biosynthesis of anticoagulant heparin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5265-5270.	7.1	51
63	Understanding the substrate specificity of the heparan sulfate sulfotransferases by an integrated biosynthetic and crystallographic approach. Current Opinion in Structural Biology, 2012, 22, 550-557.	5.7	35
64	Ara h 2: crystal structure and IgE binding distinguish two subpopulations of peanut allergic patients by epitope diversity. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 878-885.	5.7	86
65	Modeling of the DNA-binding site of yeast Pms1 by mass spectrometry. DNA Repair, 2011, 10, 454-465.	2.8	13
66	Structural insights into catalytic and substrate binding mechanisms of the strategic EndA nuclease from Streptococcus pneumoniae. Nucleic Acids Research, 2011, 39, 2943-2953.	14.5	29
67	Replication infidelity via a mismatch with Watson–Crick geometry. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1862-1867.	7.1	148
68	Functional residues on the surface of the N-terminal domain of yeast Pms1. DNA Repair, 2010, 9, 448-457.	2.8	28
69	A synergistic approach to protein crystallization: Combination of a fixedâ€arm carrier with surface entropy reduction. Protein Science, 2010, 19, 901-913.	7.6	131
70	Mutagenic conformation of 8-oxo-7,8-dihydro-2′-dGTP in the confines of a DNA polymerase active site. Nature Structural and Molecular Biology, 2010, 17, 889-890.	8.2	52
71	Der p 5 Crystal Structure Provides Insight into the Group 5 Dust Mite Allergens. Journal of Biological Chemistry, 2010, 285, 25394-25401.	3.4	52
72	The structure of the dust mite allergen Der p 7 reveals similarities to innate immune proteins. Journal of Allergy and Clinical Immunology, 2010, 125, 909-917.e4.	2.9	99

#	Article	IF	CITATIONS
73	The Der p 7 Crystal Structure Reveals Similarities to Innate Immune Proteins. Journal of Allergy and Clinical Immunology, 2010, 125, AB188.	2.9	1
74	Synthesis and biological evaluation of fluorinated deoxynucleotide analogs based on bis-(difluoromethylene)triphosphoric acid. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15693-15698.	7.1	44
75	Halogenated β,γ-Methylene- and Ethylidene-dGTP-DNA Ternary Complexes with DNA Polymerase β: Structural Evidence for Stereospecific Binding of the Fluoromethylene Analogues. Journal of the American Chemical Society, 2010, 132, 7617-7625.	13.7	48
76	DNA Polymerase Î ² Substrate Specificity. Journal of Biological Chemistry, 2009, 284, 31680-31689.	3.4	60
77	Template strand scrunching during DNA gap repair synthesis by human polymerase λ. Nature Structural and Molecular Biology, 2009, 16, 967-972.	8.2	49
78	Reaction Mechanism of the ε Subunit of E. coli DNA Polymerase III: Insights into Active Site Metal Coordination and Catalytically Significant Residues. Journal of the American Chemical Society, 2009, 131, 1550-1556.	13.7	64
79	α,β-Difluoromethylene Deoxynucleoside 5′-Triphosphates: A Convenient Synthesis of Useful Probes for DNA Polymerase β Structure and Function. Organic Letters, 2009, 11, 1883-1886.	4.6	43
80	Structure of a signal transduction regulator, RACK1, from <i>Arabidopsis thaliana</i> . Protein Science, 2008, 17, 1771-1780.	7.6	110
81	Substrateâ€induced DNA strand misalignment during catalytic cycling by DNA polymerase λ. EMBO Reports, 2008, 9, 459-464.	4.5	36
82	Engineering sulfotransferases to modify heparan sulfate. Nature Chemical Biology, 2008, 4, 200-202.	8.0	70
83	A comparison of BRCT domains involved in nonhomologous end-joining: Introducing the solution structure of the BRCT domain of polymerase lambda. DNA Repair, 2008, 7, 1340-1351.	2.8	33
84	Structures of DNA Polymerase \hat{l}^2 with Active-Site Mismatches Suggest a Transient Abasic Site Intermediate during Misincorporation. Molecular Cell, 2008, 30, 315-324.	9.7	122
85	Characterization of a replicative DNA polymerase mutant with reduced fidelity and increased translesion synthesis capacity. Nucleic Acids Research, 2008, 36, 3892-3904.	14.5	24
86	2-O-Phosphorylation of Xylose and 6-O-Sulfation of Galactose in the Protein Linkage Region of Glycosaminoglycans Influence the Glucuronyltransferase-I Activity Involved in the Linkage Region Synthesis. Journal of Biological Chemistry, 2008, 283, 16801-16807.	3.4	68
87	Incorrect nucleotide insertion at the active site of a G:A mismatch catalyzed by DNA polymerase Â. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5670-5674.	7.1	48
88	Redirecting the substrate specificity of heparan sulfate 2- <i>O</i> -sulfotransferase by structurally guided mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18724-18729.	7.1	50
89	Mutational Study of Heparan Sulfate 2-O-Sulfotransferase and Chondroitin Sulfate 2-O-Sulfotransferase. Journal of Biological Chemistry, 2007, 282, 8356-8367.	3.4	24
90	The Nuclease A-Inhibitor Complex Is Characterized by a Novel Metal Ion Bridge. Journal of Biological Chemistry, 2007, 282, 5682-5690.	3.4	23

#	Article	IF	CITATIONS
91	Modifying the β,γ Leaving-Group Bridging Oxygen Alters Nucleotide Incorporation Efficiency, Fidelity, and the Catalytic Mechanism of DNA Polymerase βâ€. Biochemistry, 2007, 46, 461-471.	2.5	99
92	(R)-β,γ-Fluoromethylene-dGTP-DNA Ternary Complex with DNA Polymerase β. Journal of the American Chemical Society, 2007, 129, 15412-15413.	13.7	54
93	Structural insight into the substrate specificity of DNA Polymerase μ. Nature Structural and Molecular Biology, 2007, 14, 45-53.	8.2	89
94	Role of the catalytic metal during polymerization by DNA polymerase lambda. DNA Repair, 2007, 6, 1333-1340.	2.8	62
95	The X family portrait: Structural insights into biological functions of X family polymerases. DNA Repair, 2007, 6, 1709-1725.	2.8	158
96	Anticoagulant heparan sulfate: structural specificity and biosynthesis. Applied Microbiology and Biotechnology, 2007, 74, 263-272.	3.6	126
97	Structural Analysis of Strand Misalignment during DNA Synthesis by a Human DNA Polymerase. Cell, 2006, 124, 331-342.	28.9	94
98	Searching for the minimum energy path in the sulfuryl transfer reaction catalyzed by human estrogen sulfotransferase: Role of enzyme dynamics. International Journal of Quantum Chemistry, 2006, 106, 2981-2998.	2.0	16
99	Magnesium-Induced Assembly of a Complete DNA Polymerase Catalytic Complex. Structure, 2006, 14, 757-766.	3.3	242
100	Promiscuous mismatch extension by human DNA polymerase lambda. Nucleic Acids Research, 2006, 34, 3259-3266.	14.5	38
101	Structure of DNA polymerase beta with a benzo[c]phenanthrene diol epoxide-adducted template exhibits mutagenic features. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17231-17236.	7.1	24
102	Structure of the Escherichia coli DNA Polymerase ΙΙΙ Ϊμ-HOT Proofreading Complex. Journal of Biological Chemistry, 2006, 281, 38466-38471.	3.4	30
103	Energy analysis of chemistry for correct insertion by DNA polymerase beta. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13294-13299.	7.1	88
104	Structure of a Complex of <i>E. coli</i> DNA Polymerase III ε Subunit with Phage P1 Homolog of Î, . FASEB Journal, 2006, 20, .	0.5	0
105	Thr176 regulates the activity of the mouse nuclear receptor CAR and is conserved in the NR1I subfamily members PXR and VDR. Biochemical Journal, 2005, 388, 623-630.	3.7	15
106	A closed conformation for the Pol λ catalytic cycle. Nature Structural and Molecular Biology, 2005, 12, 97-98.	8.2	138
107	Nucleotide-Induced DNA Polymerase Active Site Motions Accommodating a Mutagenic DNA Intermediate. Structure, 2005, 13, 1225-1233.	3.3	37
108	Structural Insights into the Mechanism of Nuclease A, a ββα Metal Nuclease from Anabaena. Journal of Biological Chemistry, 2005, 280, 27990-27997.	3.4	43

#	Article	IF	CITATIONS
109	Enzymatic Redesigning of Biologically Active Heparan Sulfate. Journal of Biological Chemistry, 2005, 280, 42817-42825.	3.4	109
110	Structural insight into the DNA polymerase β deoxyribose phosphate lyase mechanism. DNA Repair, 2005, 4, 1347-1357.	2.8	71
111	Structure–function studies of DNA polymerase lambda. DNA Repair, 2005, 4, 1358-1367.	2.8	62
112	Small Molecule Inhibitors of the Sulfotransferases. , 2005, , 781-801.		1
113	Structural Analysis of the Sulfotransferase (3-O-Sulfotransferase Isoform 3) Involved in the Biosynthesis of an Entry Receptor for Herpes Simplex Virus 1. Journal of Biological Chemistry, 2004, 279, 45185-45193.	3.4	77
114	Crystal Structure and Mutational Analysis of Heparan Sulfate 3-O-Sulfotransferase Isoform 1. Journal of Biological Chemistry, 2004, 279, 25789-25797.	3.4	64
115	A Conformational Change in Heparan Sulfate 3-O-Sulfotransferase-1 Is Induced by Binding to Heparan Sulfateâ€. Biochemistry, 2004, 43, 4680-4688.	2.5	12
116	A Structural Solution for the DNA Polymerase λ-Dependent Repair of DNA Gaps with Minimal Homology. Molecular Cell, 2004, 13, 561-572.	9.7	119
117	Glucosaminylglycan biosynthesis: what we can learn from the X-ray crystal structures of glycosyltransferases GlcAT1 and EXTL2. Biochemical and Biophysical Research Communications, 2003, 303, 393-398.	2.1	56
118	Explicit Water Near the Catalytic I Helix Thr in the Predicted Solution Structure of CYP2A4. Biophysical Journal, 2003, 84, 57-68.	0.5	14
119	Crystal Structure of Human Cholesterol Sulfotransferase (SULT2B1b) in the Presence of Pregnenolone and 3′-Phosphoadenosine 5′-Phosphate. Journal of Biological Chemistry, 2003, 278, 44593-44599.	3.4	70
120	Structural analysis by X-ray crystallography and calorimetry of a haemagglutinin component (HA1) of the progenitor toxin from Clostridium botulinum. Microbiology (United Kingdom), 2003, 149, 3361-3370.	1.8	69
121	Crystal Structure of an α1,4-N-Acetylhexosaminyltransferase (EXTL2), a Member of the Exostosin Gene Family Involved in Heparan Sulfate Biosynthesis. Journal of Biological Chemistry, 2003, 278, 14420-14428.	3.4	95
122	Molecular Determinants of the Stereoselectivity of Agonist Activity of Estrogen Receptors (ER) α and ॆ. Journal of Biological Chemistry, 2003, 278, 12255-12262.	3.4	32
123	Heparan sulphate N-sulphotransferase activity: reaction mechanism and substrate recognition. Biochemical Society Transactions, 2003, 31, 331-334.	3.4	17
124	Crystallographic analysis of a hydroxylated polychlorinated biphenyl (OH-PCB) bound to the catalytic estrogen binding site of human estrogen sulfotransferase Environmental Health Perspectives, 2003, 111, 884-888.	6.0	62
125	Crystal Structure of β1,3-Glucuronyltransferase I in Complex with Active Donor Substrate UDP-GlcUA. Journal of Biological Chemistry, 2002, 277, 21869-21873.	3.4	67
126	Crystal Structure of the Human Estrogen Sulfotransferase-PAPS Complex. Journal of Biological Chemistry, 2002, 277, 17928-17932.	3.4	107

#	Article	IF	CITATIONS
127	Structure and Function of Sulfotransferases. Archives of Biochemistry and Biophysics, 2001, 390, 149-157.	3.0	306
128	The dimerization motif of cytosolic sulfotransferases. FEBS Letters, 2001, 490, 39-43.	2.8	99
129	Crystal structure-based studies of cytosolic sulfotransferase. Journal of Biochemical and Molecular Toxicology, 2001, 15, 67-75.	3.0	59
130	Crystal Structure-Based Analysis of Human Glucuronyltransferase 1 Trends in Glycoscience and Glycotechnology, 2001, 13, 121-129.	0.1	1
131	Heparan/Chondroitin Sulfate Biosynthesis. Journal of Biological Chemistry, 2000, 275, 34580-34585.	3.4	178
132	Heparan Sulfate Biosynthesis: A Theoretical Study of the Initial Sulfation Step by N-Deacetylase/N-Sulfotransferase. Biophysical Journal, 2000, 79, 2909-2917.	0.5	21
133	Crystal structure of SULT2A3, human hydroxysteroid sulfotransferase. FEBS Letters, 2000, 475, 61-64.	2.8	98
134	Structureâ^'Function Modeling of the Interactions ofN-Alkyl-N-hydroxyanilines with Rat Hepatic Aryl Sulfotransferase IV. Chemical Research in Toxicology, 2000, 13, 1251-1258.	3.3	13
135	Structure and Function of HNK-1 Sulfotransferase. Journal of Biological Chemistry, 1999, 274, 25608-25612.	3.4	39
136	Crystal Structure of the Sulfotransferase Domain of Human Heparan SulfateN-Deacetylase/N-Sulfotransferase 1. Journal of Biological Chemistry, 1999, 274, 10673-10676.	3.4	128
137	Substrate Gating Confers Steroid Specificity to Estrogen Sulfotransferase. Journal of Biological Chemistry, 1999, 274, 30019-30022.	3.4	59
138	A quantum mechanical study of the transfer of biological sulfate. Computational and Theoretical Chemistry, 1999, 461-462, 105-111.	1.5	11
139	Identification of the Calcium Binding Site and a Novel Ytterbium Site in Blood Coagulation Factor XIII by X-ray Crystallography. Journal of Biological Chemistry, 1999, 274, 4917-4923.	3.4	98
140	3â€~-Phosphoadenosine 5â€~-Phosphosulfate Binding Site of Flavonol 3-Sulfotransferase Studied by Affinity Chromatography and31P NMRâ€. Biochemistry, 1999, 38, 4066-4071.	2.5	22
141	Crystal structure of human catecholamine sulfotransferase 1 1Edited by R. Huber. Journal of Molecular Biology, 1999, 293, 521-530.	4.2	119
142	Conserved structural motifs in the sulfotransferase family. Trends in Biochemical Sciences, 1998, 23, 129-130.	7.5	158
143	A role of Lys614in the sulfotransferase activity of human heparan sulfateN-deacetylase/N-sulfotransferase. FEBS Letters, 1998, 433, 211-214.	2.8	48
144	Structural Determinants of the Bifunctional Corn Hageman Factor Inhibitor:  X-ray Crystal Structure at 1.95 Ã Resolution,. Biochemistry, 1998, 37, 15277-15288.	2.5	53

#	Article	IF	CITATIONS
145	Mouse Steroid Sulfotransferases. Biochemical Pharmacology, 1998, 55, 313-317.	4.4	41
146	The Sulfuryl Transfer Mechanism. Journal of Biological Chemistry, 1998, 273, 27325-27330.	3.4	135
147	Crystal structure of estrogen sulphotransferase. Nature Structural and Molecular Biology, 1997, 4, 904-908.	8.2	263
148	Structure and Function Studies of Factor XIIIa by x-ray Crystallography. Seminars in Thrombosis and Hemostasis, 1996, 22, 377-384.	2.7	44
149	Structural evidence that the activation peptide is not released upon thrombin cleavage of factor XIII. Thrombosis Research, 1995, 78, 389-397.	1.7	84
150	Structural investigation of the antibiotic and ATP-binding sites in kanamycin nucleotidyltransferase. Biochemistry, 1995, 34, 13305-13311.	2.5	177
151	Transglutaminase factor XIII uses proteinaseâ€like catalytic triad to crosslink macromolecules. Protein Science, 1994, 3, 1131-1135.	7.6	142
152	The Corn Inhibitor of Blood Coagulation Factor XIIa. Journal of Molecular Biology, 1994, 236, 385-387.	4.2	6