
Temugin Berta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4543711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glia and pain: Is chronic pain a gliopathy?. Pain, 2013, 154, S10-S28.	4.2	868
2	Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nature Medicine, 2010, 16, 592-597.	30.7	503
3	Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nature Medicine, 2015, 21, 1326-1331.	30.7	272
4	Spinal inhibition of p38 MAP kinase reduces inflammatory and neuropathic pain in male but not female mice: Sex-dependent microglial signaling in the spinal cord. Brain, Behavior, and Immunity, 2016, 55, 70-81.	4.1	253
5	Extracellular MicroRNAs Activate Nociceptor Neurons to Elicit Pain via TLR7 and TRPA1. Neuron, 2014, 82, 47-54.	8.1	250
6	Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice. Brain, 2014, 137, 2193-2209.	7.6	236
7	CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5. Journal of Clinical Investigation, 2016, 126, 745-761.	8.2	233
8	Toll-like receptor 7 mediates pruritus. Nature Neuroscience, 2010, 13, 1460-1462.	14.8	217
9	TNF-alpha contributes to spinal cord synaptic plasticity and inflammatory pain: Distinct role of TNF receptor subtypes 1 and 2. Pain, 2011, 152, 419-427.	4.2	205
10	Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain. Expert Opinion on Therapeutic Targets, 2017, 21, 695-703.	3.4	192
11	Extracellular caspase-6 drives murine inflammatory pain via microglial TNF-α secretion. Journal of Clinical Investigation, 2014, 124, 1173-1186.	8.2	171
12	Microglia and Spinal Cord Synaptic Plasticity in Persistent Pain. Neural Plasticity, 2013, 2013, 1-10.	2.2	152
13	TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. Journal of Clinical Investigation, 2012, 122, 2195-2207.	8.2	143
14	Sex-Dependent Clial Signaling in Pathological Pain: Distinct Roles of Spinal Microglia and Astrocytes. Neuroscience Bulletin, 2018, 34, 98-108.	2.9	140
15	Nociceptive neurons regulate innate and adaptive immunity and neuropathic pain through MyD88 adapter. Cell Research, 2014, 24, 1374-1377.	12.0	125
16	SHANK3 Deficiency Impairs Heat Hyperalgesia and TRPV1 Signaling in Primary Sensory Neurons. Neuron, 2016, 92, 1279-1293.	8.1	119
17	Toll-like receptor 4 contributes to chronic itch, alloknesis, and spinal astrocyte activation in male mice. Pain, 2016, 157, 806-817.	4.2	114
18	Lipoxin A4 inhibits microglial activation and reduces neuroinflammation and neuropathic pain after spinal cord hemisection. Journal of Neuroinflammation, 2016, 13, 75.	7.2	109

TEMUGIN BERTA

#	Article	IF	CITATIONS
19	Upregulation of the Voltage-Gated Sodium Channel Â2 Subunit in Neuropathic Pain Models: Characterization of Expression in Injured and Non-Injured Primary Sensory Neurons. Journal of Neuroscience, 2005, 25, 10970-10980.	3.6	108
20	Resolvin E1 Inhibits Neuropathic Pain and Spinal Cord Microglial Activation Following Peripheral Nerve Injury. Journal of NeuroImmune Pharmacology, 2013, 8, 37-41.	4.1	106
21	Neuropathic Pain Is Constitutively Suppressed in Early Life by Anti-Inflammatory Neuroimmune Regulation. Journal of Neuroscience, 2015, 35, 457-466.	3.6	104
22	Neuroprotectin/protectin D1 protects against neuropathic pain in mice after nerve trauma. Annals of Neurology, 2013, 74, 490-495.	5.3	102
23	Transcriptional and functional profiles of voltage-gated Na+ channels in injured and non-injured DRG neurons in the SNI model of neuropathic pain. Molecular and Cellular Neurosciences, 2008, 37, 196-208.	2.2	98
24	Expression and Role of Voltage-Gated Sodium Channels in Human Dorsal Root Ganglion Neurons with Special Focus on Nav1.7, Species Differences, and Regulation by Paclitaxel. Neuroscience Bulletin, 2018, 34, 4-12.	2.9	97
25	Distinct ASIC currents are expressed in rat putative nociceptors and are modulated by nerve injury. Journal of Physiology, 2006, 576, 215-234.	2.9	94
26	IL-23/IL-17A/TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice. Neuron, 2021, 109, 2691-2706.e5.	8.1	93
27	Large A-Fiber Activity is Required for Microglial Proliferation and P38 MAPK Activation in the Spinal Cord: Different Effects of Resiniferatoxin and Bupivacaine on Spinal Microglial Changes after Spared Nerve Injury. Molecular Pain, 2009, 5, 1744-8069-5-53.	2.1	91
28	Acute Morphine Activates Satellite Glial Cells and Up-Regulates IL-1β in Dorsal Root Ganglia in Mice via Matrix Metalloprotease-9. Molecular Pain, 2012, 8, 1744-8069-8-18.	2.1	77
29	Gene Expression Profiling of Cutaneous Injured and Non-Injured Nociceptors in SNI Animal Model of Neuropathic Pain. Scientific Reports, 2017, 7, 9367.	3.3	62
30	Microglial Signaling in Chronic Pain with a Special Focus on Caspase 6, p38 MAP Kinase, and Sex Dependence. Journal of Dental Research, 2016, 95, 1124-1131.	5.2	59
31	Interferon alpha inhibits spinal cord synaptic and nociceptive transmission via neuronal-glial interactions. Scientific Reports, 2016, 6, 34356.	3.3	50
32	β-arrestin-2 regulates NMDA receptor function in spinal lamina II neurons and duration of persistent pain. Nature Communications, 2016, 7, 12531.	12.8	49
33	Transcriptional Profiling of Somatostatin Interneurons in the Spinal Dorsal Horn. Scientific Reports, 2018, 8, 6809.	3.3	48
34	Tissue plasminogen activator contributes to morphine tolerance and induces mechanical allodynia via astrocytic IL-1β and ERK signaling in the spinal cord of mice. Neuroscience, 2013, 247, 376-385.	2.3	45
35	Monoclonal Antibody Targeting the Matrix Metalloproteinase 9 Prevents and Reverses Paclitaxel-Induced Peripheral Neuropathy in Mice. Journal of Pain, 2019, 20, 515-527.	1.4	44
36	Resolvin D3 controls mouse and human TRPV1-positive neurons and preclinical progression of psoriasis. Theranostics, 2020, 10, 12111-12126.	10.0	40

TEMUGIN BERTA

#	Article	IF	CITATIONS
37	Acute Morphine Induces Matrix Metalloproteinase-9 Up-Regulation in Primary Sensory Neurons to Mask Opioid-Induced Analgesia in Mice. Molecular Pain, 2012, 8, 1744-8069-8-19.	2.1	31
38	High-fat diet exacerbates postoperative pain and inflammation in a sex-dependent manner. Pain, 2018, 159, 1731-1741.	4.2	31
39	Peripheral serotonin receptor 2B and transient receptor potential channel 4 mediate pruritus to serotonergic antidepressants in mice. Journal of Allergy and Clinical Immunology, 2018, 142, 1349-1352.e16.	2.9	29
40	Paclitaxel-activated astrocytes produce mechanical allodynia in mice by releasing tumor necrosis factor-α and stromal-derived cell factor 1. Journal of Neuroinflammation, 2019, 16, 209.	7.2	24
41	Sensory Neuron–Expressed TRPC4 Is a Target for the Relief of Psoriasiform Itch and Skin Inflammation in Mice. Journal of Investigative Dermatology, 2020, 140, 2221-2229.e6.	0.7	20
42	Key role of CCR2-expressing macrophages in a mouse model of low back pain and radiculopathy. Brain, Behavior, and Immunity, 2021, 91, 556-567.	4.1	20
43	Local Sympathectomy Promotes Anti-inflammatory Responses and Relief of Paclitaxel-induced Mechanical and Cold Allodynia in Mice. Anesthesiology, 2020, 132, 1540-1553.	2.5	20
44	Calcium phosphate transfection optimization for serum-free suspension culture. Cytotechnology, 2001, 35, 175-180.	1.6	18
45	Short small-interfering RNAs produce interferon-α-mediated analgesia. British Journal of Anaesthesia, 2012, 108, 662-669.	3.4	15
46	Ferulic acid dimer as a non-opioid therapeutic for acute pain. Journal of Pain Research, 2018, Volume 11, 1075-1085.	2.0	15
47	Transcriptional profile of spinal dynorphin-lineage interneurons in the developing mouse. Pain, 2019, 160, 2380-2397.	4.2	15
48	The inhibition of Kir2.1 potassium channels depolarizes spinal microglial cells, reduces their proliferation, and attenuates neuropathic pain. Glia, 2020, 68, 2119-2135.	4.9	15
49	Unconventional Role of Caspase-6 in Spinal Microglia Activation and Chronic Pain. Mediators of Inflammation, 2017, 2017, 1-8.	3.0	14
50	The Anti-Inflammatory Agent Bindarit Attenuates the Impairment of Neural Development through Suppression of Microglial Activation in a Neonatal Hydrocephalus Mouse Model. Journal of Neuroscience, 2022, 42, 1820-1844.	3.6	13
51	5-Hydroxymethylcytosine (5hmC) and Ten-eleven translocation 1–3 (TET1–3) proteins in the dorsal root ganglia of mouse: Expression and dynamic regulation in neuropathic pain. Somatosensory & Motor Research, 2017, 34, 72-79.	0.9	11
52	Mineralocorticoid Antagonist Improves Glucocorticoid Receptor Signaling and Dexamethasone Analgesia in an Animal Model of Low Back Pain. Frontiers in Cellular Neuroscience, 2018, 12, 453.	3.7	10
53	Systemic Progesterone Administration in Early Life Alters the Hyperalgesic Responses to Surgery in the Adult. Anesthesia and Analgesia, 2015, 121, 545-555.	2.2	7
54	Transient Receptor Potential Channels and Botulinum Neurotoxins in Chronic Pain. Frontiers in Molecular Neuroscience, 2021, 14, 772719.	2.9	7

TEMUGIN BERTA

#	Article	IF	CITATIONS
55	Efficient Expression and Mutation of Avidin and Streptavidin as Host Proteins for Enantioselective Catalysis. Chimia, 2003, 57, 589-592.	0.6	4
56	Transient Receptor Potential Channel 4 Small-Molecule Inhibition Alleviates Migraine-Like Behavior in Mice. Frontiers in Molecular Neuroscience, 2021, 14, 765181.	2.9	4
57	Venom Peptide Toxins Targeting the Outer Pore Region of Transient Receptor Potential Vanilloid 1 in Pain: Implications for Analgesic Drug Development. International Journal of Molecular Sciences, 2022, 23, 5772.	4.1	3
58	How Do Satellite Glial Cells Control Chronic Pain?. Journal of Anesthesia and Perioperative Medicine, 2018, 5, 306-315.	0.2	2
59	Animal Models and Neuropathic Pain. , 2008, , 857-864.		1
60	Common Animal Models in theÂStudy of Pain. , 2019, , 95-100.		0

Common Animal Models in theÂStudy of Pain. , 2019, , 95-100. 60