
Isabelle Lihrmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4543652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cloning of the cDNA encoding the urotensin II precursor in frog and human reveals intense expression of the urotensin II gene in motoneurons of the spinal cord. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15803-15808.	7.1	388
2	Cloning, sequence analysis and tissue distribution of the mouse and rat urotensin II precursors. FEBS Letters, 1999, 457, 28-32.	2.8	168
3	Developmental stage-specific regulation of atrial natriuretic factor gene transcription in cardiac cells Molecular and Cellular Biology, 1994, 14, 777-790.	2.3	107
4	Comparative distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) binding sites and PACAP receptor mRNAs in the rat brain during development. Journal of Comparative Neurology, 2000, 425, 495-509.	1.6	101
5	Structure–activity relationships and structural conformation of a novel urotensin II-related peptide. Peptides, 2004, 25, 1819-1830.	2.4	95
6	Occurrence of two somatostatin variants in the frog brain: characterization of the cDNAs, distribution of the mRNAs, and receptor-binding affinities of the peptides Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 12605-12610.	7.1	91
7	Selenoprotein T Exerts an Essential Oxidoreductase Activity That Protects Dopaminergic Neurons in Mouse Models of Parkinson's Disease. Antioxidants and Redox Signaling, 2016, 24, 557-574.	5.4	91
8	Comparative genomics provides evidence for close evolutionary relationships between the urotensin II and somatostatin gene families. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2237-2242.	7.1	87
9	Overexpression of Serotonin4 Receptors in Cisapride-Responsive Adrenocorticotropin-Independent Bilateral Macronodular Adrenal Hyperplasia Causing Cushing's Syndrome. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 248-254.	3.6	75
10	Characterization of the cDNA encoding proopiomelanocortin in the frog Rana ridibunda. Biochemical and Biophysical Research Communications, 1990, 173, 653-659.	2.1	68
11	New insight into the molecular evolution of the somatostatin family. Molecular and Cellular Endocrinology, 2008, 286, 5-17.	3.2	66
12	The PACAP-Regulated Gene Selenoprotein T Is Abundantly Expressed in Mouse and Human β-Cells and Its Targeted Inactivation Impairs Glucose Tolerance. Endocrinology, 2013, 154, 3796-3806.	2.8	62
13	Localization of the urotensin II receptor in the rat central nervous system. Journal of Comparative Neurology, 2006, 495, 21-36.	1.6	60
14	Frog diazepam-binding inhibitor: peptide sequence, cDNA cloning, and expression in the brain Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 6899-6903.	7.1	56
15	MOLECULAR EVOLUTION OF GPCRS: Somatostatin/urotensin II receptors. Journal of Molecular Endocrinology, 2014, 52, T61-T86.	2.5	54
16	Role of Exogenous and Endogenous Prostaglandins in Steroidogenesis by Isolated Frog Interrenal Gland: Evidence for Dissociation in Adrenocorticotropin and Angiotensin Action*. Endocrinology, 1984, 115, 1765-1773.	2.8	50
17	Expression profile of serotonin4 (5-HT4) receptors in adrenocortical aldosterone-producing adenomas. European Journal of Endocrinology, 2005, 153, 939-947.	3.7	50
18	Biochemical and functional characterization of high-affinity urotensin II receptors in rat cortical astrocytes. Journal of Neurochemistry, 2006, 99, 582-595.	3.9	50

#	Article	IF	CITATIONS
19	The PACAP-Regulated Gene Selenoprotein T Is Highly Induced in Nervous, Endocrine, and Metabolic Tissues during Ontogenetic and Regenerative Processes. Endocrinology, 2011, 152, 4322-4335.	2.8	50
20	Molecular cloning of frog secretogranin II reveals the occurrence of several highly conserved potential regulatory peptides. FEBS Letters, 1996, 394, 295-299.	2.8	48
21	Selenoprotein T is a novel OST subunit that regulates UPR signaling and hormone secretion. EMBO Reports, 2017, 18, 1935-1946.	4.5	48
22	Serotonin stimulates corticosteroid secretion by frog adrenocortical tissue in vitro. The Journal of Steroid Biochemistry, 1988, 29, 519-525.	1.1	46
23	Selenoprotein T is a key player in ER proteostasis, endocrine homeostasis and neuroprotection. Free Radical Biology and Medicine, 2018, 127, 145-152.	2.9	46
24	Comparative Distribution and In Vitro Activities of the Urotensin II-Related Peptides URP1 and URP2 in Zebrafish: Evidence for Their Colocalization in Spinal Cerebrospinal Fluid-Contacting Neurons. PLoS ONE, 2015, 10, e0119290.	2.5	45
25	Role of androgens in the regulation of urotensin II precursor mRNA expression in the rat brainstem and spinal cord. Neuroscience, 2002, 115, 525-532.	2.3	42
26	Molecular cloning of the cDNAs and distribution of the mRNAs encoding two somatostatin precursors in the African lungfishProtopterus annectens. , 1999, 410, 643-652.		41
27	Pharmacological and Molecular Characterization of 5-Hydroxytryptamine ₇ Receptors in the Rat Adrenal Gland. Molecular Pharmacology, 1999, 56, 552-561.	2.3	40
28	Characterization of Serotonin4Receptors in Adrenocortical Aldosterone-Producing Adenomas:In Vivoandin VitroStudies. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 1211-1216.	3.6	40
29	Characterization of urotensin II, distribution of urotensin II, urotensin IIâ€related peptide and UT receptor mRNAs in mouse: evidence of urotensin II at the neuromuscular junction. Journal of Neurochemistry, 2008, 107, 361-374.	3.9	40
30	Cloning of Proopiomelanocortin from the Brain of the African Lungfish, <i>Protopterus annectens</i> , and the Brain of the Western Spadefoot Toad, <i>Spea multiplicatus</i> . Neuroendocrinology, 1999, 70, 43-54.	2.5	39
31	Androgenic down-regulation of urotensin II precursor, urotensin II-related peptide precursor and androgen receptor mRNA in the mouse spinal cord. Neuroscience, 2005, 132, 689-696.	2.3	38
32	Polygenic expression of somatostatin in the sturgeonAcipenser transmontanus: Molecular cloning and distribution of the mRNAs encoding two somatostatin precursors. Journal of Comparative Neurology, 2002, 443, 332-345.	1.6	37
33	Localization of diazepam-binding inhibitor-related peptides and peripheral type benzodiazepine receptors in the frog adrenal gland. Cell and Tissue Research, 1996, 283, 403-412.	2.9	36
34	Characterization of the cDNA encoding a somatostatin variant in the chicken brain: Comparison of the distribution of the two somatostatin precursor mRNAs. Journal of Comparative Neurology, 2003, 461, 441-451.	1.6	35
35	Occurrence of Two Distinct Urotensin II-Related Peptides in Zebrafish Provides New Insight into the Evolutionary History of the Urotensin II Gene Family. Endocrinology, 2011, 152, 2330-2341.	2.8	35
36	Specific expression of the urotensin II gene in sacral motoneurons of developing rat spinal cord. Mechanisms of Development, 2001, 101, 187-190.	1.7	34

#	Article	IF	CITATIONS
37	Selenoprotein T: An Essential Oxidoreductase Serving as a Guardian of Endoplasmic Reticulum Homeostasis. Antioxidants and Redox Signaling, 2020, 33, 1257-1275.	5.4	34
38	Localization and characterization of pituitary adenylate cyclase-activating polypeptide receptors in the human cerebellum during development. Journal of Comparative Neurology, 2006, 496, 468-478.	1.6	32
39	Action of vasoactive intestinal peptide (VIP) on amphibian adrenocortical function, in vitro. Peptides, 1984, 5, 299-303.	2.4	31
40	Effect of atrial natriuretic factor on corticosteroid production by perifused frog interrenal slices. General and Comparative Endocrinology, 1988, 71, 55-62.	1.8	31
41	Impact of gene/genome duplications on the evolution of the urotensin II and somatostatin families. General and Comparative Endocrinology, 2013, 188, 110-117.	1.8	31
42	Structureâ^'Activity Relationships of a Novel Series of Urotensin II Analogues:  Identification of a Urotensin II Antagonist. Journal of Medicinal Chemistry, 2006, 49, 7234-7238.	6.4	30
43	Comparative distribution of the mRNAs encoding urotensin I and urotensin II in zebrafish. Peptides, 2008, 29, 820-829.	2.4	30
44	Chromosomal localization of three somatostatin genes in zebrafish. Evidence that the [Pro2]-somatostatin-14 isoform and cortistatin are encoded by orthologous genes. Journal of Molecular Endocrinology, 2004, 33, R1-R8.	2.5	28
45	Granins and their derived peptides in normal and tumoral chromaffin tissue: Implications for the diagnosis and prognosis of pheochromocytoma. Regulatory Peptides, 2010, 165, 21-29.	1.9	26
46	Two Frog Melanotrope Cell Subpopulations Exhibiting Distinct Biochemical and Physiological Patterns in Basal Conditions and under Thyrotropin-Releasing Hormone Stimulation*. Endocrinology, 1997, 138, 970-977.	2.8	25
47	Metoclopramide stimulates catecholamine- and granin-derived peptide secretion from pheochromocytoma cells through activation of serotonin type 4 (5-HT4) receptors. Endocrine-Related Cancer, 2009, 16, 281-290.	3.1	24
48	AMPK Activation of PGC-1α/NRF-1-Dependent SELENOT Gene Transcription Promotes PACAP-Induced Neuroendocrine Cell Differentiation Through Tolerance to Oxidative Stress. Molecular Neurobiology, 2019, 56, 4086-4101.	4.0	23
49	In the African Lungfish Met-Enkephalin and Leu-Enkephalin Are Derived from Separate Genes: Cloning of a Proenkephalin cDNA. Neuroendocrinology, 2000, 72, 224-230.	2.5	19
50	Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) Promotes Both Survival and Neuritogenesis in PC12 Cells through Activation of Nuclear Factor IºB (NF-IºB) Pathway. Journal of Biological Chemistry, 2013, 288, 14936-14948.	3.4	19
51	Emerging roles of ER-resident selenoproteins in brain physiology and physiopathology. Redox Biology, 2022, 55, 102412.	9.0	16
52	In vitro study of frog (Rana ridibunda pallas) interrenal function by use of a simplified perifusion system VIII. Structure-activity relationship of synthetic ACTH fragments and γ-MSH. General and Comparative Endocrinology, 1986, 61, 187-196.	1.8	15
53	Effect of calcium on corticosteroid secretion by isolated frog interrenal gland. The Journal of Steroid Biochemistry, 1985, 23, 169-175.	1.1	14
54	Effect of Serotonin4(5-HT4) Receptor Agonists on Aldosterone Secretion in Idiopathic Hyperaldosteronism. Endocrine Research, 2000, 26, 583-587.	1.2	14

#	Article	IF	CITATIONS
55	Involvement of prostaglandins in the response of frog adrenocortical cells to muscarinic receptor activation. Prostaglandins, 1986, 32, 87-91.	1.2	13
56	Effect of vinblastine, a potent antimicrotubular agent on steroid secretion by perifused frog adrenal glands. The Journal of Steroid Biochemistry, 1986, 25, 143-147.	1.1	12
57	Effects of TMB-8 and dantrolene on ACTH- and angiotensin-induced steroidogenesis by frog interrenal gland: Evidence for a role of intracellular calcium in angiotensin action. Cell Calcium, 1987, 8, 269-282.	2.4	12
58	Expression and Processing of the [Pro2,Met13]Somatostatin-14 Precursor in the Intermediate Lobe of the Frog Pituitary. Endocrinology, 2002, 143, 3472-3481.	2.8	12
59	Paradoxical Inhibitory Effect of Serotonin on Cortisol Production from Adrenocortical Lesions Causing Cushing's Syndrome. Endocrine Research, 2004, 30, 951-954.	1.2	12
60	Distribution of PACAP Receptor mRNAs and PACAP Binding Sites in the Rat Brain During Development. Annals of the New York Academy of Sciences, 2000, 921, 304-307.	3.8	9
61	Neuropeptide Y Inhibits Spontaneous Â-Melanocyte-Stimulating Hormone (Â-MSH) Release via a Y5 Receptor and Suppresses Thyrotropin-Releasing Hormone-Induced Â-MSH Secretion via a Y1 Receptor in Frog Melanotrope Cells. Endocrinology, 2002, 143, 1686-1694.	2.8	9
62	Lack of effect of dexamethasone on corticosteroid production in the amphibian. The Journal of Steroid Biochemistry, 1984, 21, 727-731.	1.1	7
63	Development of a simplified perifusion system of rat zona glomerulosa. Effect of cytochalasin B on spontaneous and ACTH-stimulated corticosteroidogenesis. The Journal of Steroid Biochemistry, 1986, 24, 331-334.	1.1	7
64	Role of calcium in stimulus-secretion coupling on isolated frog interrenal gland. The Journal of Steroid Biochemistry, 1986, 24, 731-738.	1.1	7
65	Formation of 11β-hydroxysteroids requires the integrity of the microfilament network in adrenocortical cells. Biochemical and Biophysical Research Communications, 1987, 148, 1354-1362.	2.1	7
66	Comparative distribution of pituitary adenylate cyclaseâ€activating polypeptide (PACAP) binding sites and PACAP receptor mRNAs in the rat brain during development. Journal of Comparative Neurology, 2000, 425, 495-509.	1.6	7
67	Two Frog Melanotrope Cell Subpopulations Exhibiting Distinct Biochemical and Physiological Patterns in Basal Conditions and under Thyrotropin-Releasing Hormone Stimulation. Endocrinology, 1997, 138, 970-977.	2.8	7
68	Characterization of Serotonin4 Receptors in Adrenocortical Aldosterone-Producing Adenomas: In Vivo and in Vitro Studies. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 1211-1216.	3.6	7
69	Role of prostaglandins in calcium-induced corticosteroid secretion by isolated frog interrenal gland. Prostaglandins, 1986, 32, 127-131.	1.2	6
70	Molecular Evolution of Somatostatin Genes. , 2004, , 47-64.		6
71	PACAP Signaling in Neuroprotection. Current Topics in Neurotoxicity, 2016, , 549-561.	0.4	5
72	Evaluation of ovarian POMC mRNA through quantitative RT-PCR analysis in <i>Rana esculenta</i> . American Journal of Physiology - Cell Physiology, 2001, 280, C1038-C1044.	4.6	4

#	Article	IF	CITATIONS
73	Distribution of atrial natriuretic factor-like immunoreactivity in the brain of the frog Rana ridibunda. Canadian Journal of Physiology and Pharmacology, 1988, 66, 262-269.	1.4	3
74	Occurrence of an Ovarian Opioid System in Oviparous Vertebrates: Proopiomelanocortin mRna Expression in the Ovary of the Green Water Frog, Rana Esculenta. Animal Biology, 1994, 45, 163-165.	0.4	3
75	A Second Somatostatin Gene is Expressed in the Brain of the Frog Rana ridibunda. Annals of the New York Academy of Sciences, 1998, 839, 496-497.	3.8	3
76	Linkage Mapping of the [Pro2]Somatostatin-14 Gene in Zebrafish: Evolutionary Perspectives. Annals of the New York Academy of Sciences, 2005, 1040, 486-489.	3.8	3
77	Concordant localization of functional urotensin II and urotensin IIâ€related peptide binding sites in the rat brain: Atypical occurrence close to the fourth ventricle. Journal of Comparative Neurology, 2014, 522, 2634-2649.	1.6	3
78	Selenoprotein T: From Discovery to Functional Studies Using Conditional Knockout Mice. , 2016, , 275-286.		3
79	Deux neuropeptides orphelins trouvent enfin leur récepteur Medecine/Sciences, 2000, 16, 426.	0.2	3
80	The SELENOT mimetic PSELT promotes nerve regeneration by increasing axonal myelination in a facial nerve injury model in female rats. Journal of Neuroscience Research, 2022, 100, 1721-1731.	2.9	3
81	In vitro study of frog adrenal function—IX. evidence against the involvement of lipoxygenase metabolites in the control of steroid production. The Journal of Steroid Biochemistry, 1988, 30, 461-464.	1.1	2
82	Proopiomelanocortin Gene Expression in the Ovary of the Frog, Rana esculentaa. Annals of the New York Academy of Sciences, 1998, 839, 265-269.	3.8	2
83	Urotensin II and Urotensin II–Related Peptide. , 2006, , 795-803.		2
84	Selenoprotein T. Advanced Topics in Science and Technology in China, 2011, , 89-95.	0.1	1
85	Urotensin II Peptides. , 2013, , 957-965.		1
86	Un deuxième gène codant pour la somatostatine est exprimé dans le cerveau. Medecine/Sciences, 1996, 12, 1131.	0.2	1
87	Involvement of cycloheximide-sensitive mediators in the steroidogenic action of adrenocorticotropin and angiotensin II. The Journal of Steroid Biochemistry, 1986, 25, 59-64.	1.1	0
88	Le Lobe Intermediaire de l'hypophyse, Modéle de Communication Neuroendocrinienne. Archives Internationales De Physiologie Et De Biochimie, 1989, 97, A227-A254.	0.2	0
89	Expression of Proopiomelanocortin and Its Cleavage Enzyme Genes inRana esculentaandXenopus laevisGonads. Annals of the New York Academy of Sciences, 2005, 1040, 261-263.	3.8	0

90 Kennedy Syndrome. , 2009, , 1116-1116.

#	Article	IF	CITATIONS
91	L'urotensine II : de l'urophyse des poissons aux motoneurones humains Medecine/Sciences, 1999, 15, 709.	0.2	0