List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4543619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elucidation of the genetic causes of bicuspid aortic valve disease. Cardiovascular Research, 2023, 119, 857-866.	1.8	11
2	<i>Cis</i> -epistasis at the <i>LPA</i> locus and risk of cardiovascular diseases. Cardiovascular Research, 2022, 118, 1088-1102.	1.8	14
3	Transcriptome-wide association study of coronary artery disease identifies novel susceptibility genes. Basic Research in Cardiology, 2022, 117, 6.	2.5	22
4	Genetically Determined Reproductive Aging and Coronary Heart Disease: A Bidirectional 2-sample Mendelian Randomization. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e2952-e2961.	1.8	13
5	Sex matters? Sex matters!. Cardiovascular Research, 2022, 118, e1-e3.	1.8	4
6	New technologies for intensive prevention programs after myocardial infarction: rationale and design of the NET-IPP trial. Clinical Research in Cardiology, 2021, 110, 153-161.	1.5	8
7	Identifying multimodal signatures underlying the somatic comorbidity of psychosis: the COMMITMENT roadmap. Molecular Psychiatry, 2021, 26, 722-724.	4.1	7
8	sGC Activity and Regulation of Blood Flow in a Zebrafish Model System. Frontiers in Physiology, 2021, 12, 633171.	1.3	3
9	Unfolding and disentangling coronary vascular disease through genome-wide association studies. European Heart Journal, 2021, 42, 934-937.	1.0	2
10	Induced Pluripotent Stem Cells (iPSCs) in Vascular Research: from Two- to Three-Dimensional Organoids. Stem Cell Reviews and Reports, 2021, 17, 1741-1753.	1.7	6
11	Genome-wide association analysis in dilated cardiomyopathy reveals two new players in systolic heart failure on chromosomes 3p25.1 and 22q11.23. European Heart Journal, 2021, 42, 2000-2011.	1.0	49
12	The CAD risk locus 9p21 increases the risk of vascular calcification in an iPSC-derived VSMC model. Stem Cell Research and Therapy, 2021, 12, 166.	2.4	4
13	A proteomic atlas of the neointima identifies novel druggable targets for preventive therapy. European Heart Journal, 2021, 42, 1773-1785.	1.0	11
14	Identification of two novel bullous pemphigoid- associated alleles, HLA-DQA1*05:05 and -DRB1*07:01, in Germans. Orphanet Journal of Rare Diseases, 2021, 16, 228.	1.2	16
15	Effect of Differences in the Microbiome of Cyp17a1-Deficient Mice on Atherosclerotic Background. Cells, 2021, 10, 1292.	1.8	3
16	The C5a/C5a receptor 1 axis controls tissue neovascularization through CXCL4 release from platelets. Nature Communications, 2021, 12, 3352.	5.8	27
17	A Novel Missense Mutation in TNNI3K Causes Recessively Inherited Cardiac Conduction Disease in a Consanguineous Pakistani Family. Genes, 2021, 12, 1282.	1.0	5
18	Identification of a Functional <i>PDE5A</i> Variant at the Chromosome 4q27 Coronary Artery Disease Locus in an Extended Myocardial Infarction Family. Circulation, 2021, 144, 662-665.	1.6	6

#	Article	IF	CITATIONS
19	What can we learn from common variants associated with unexpected phenotypes in rare genetic diseases?. Orphanet Journal of Rare Diseases, 2021, 16, 41.	1.2	2
20	The power of genetic diversity in genome-wide association studies of lipids. Nature, 2021, 600, 675-679.	13.7	353
21	Long-term prevention after myocardial infarction in young patients â‰ 4 5 years: the Intensive Prevention Program in the Young (IPP-Y) study. European Journal of Preventive Cardiology, 2020, 27, 2264-2266.	0.8	9
22	Osteoclast imbalance in primary familial brain calcification: evidence for its role in brain calcification. Brain, 2020, 143, e1-e1.	3.7	2
23	Heterozygous <i>ABCG5</i> Gene Deficiency and Risk of Coronary Artery Disease. Circulation Genomic and Precision Medicine, 2020, 13, 417-423.	1.6	45
24	Studies in Zebrafish Demonstrate That CNNM2 and NT5C2 Are Most Likely the Causal Genes at the Blood Pressure-Associated Locus on Human Chromosome 10q24.32. Frontiers in Cardiovascular Medicine, 2020, 7, 135.	1.1	14
25	Genetic Predisposition to Coronary Artery Disease in Type 2 Diabetes Mellitus. Circulation Genomic and Precision Medicine, 2020, 13, e002769.	1.6	5
26	Qtlizer: comprehensive QTL annotation of GWAS results. Scientific Reports, 2020, 10, 20417.	1.6	23
27	Increased Serum Levels of Asymmetric Dimethylarginine and Symmetric Dimethylarginine and Decreased Levels of Arginine in Sudanese Patients with Essential Hypertension. Kidney and Blood Pressure Research, 2020, 45, 727-736.	0.9	11
28	Mendelian randomization analysis does not support causal associations of birth weight with hypertension risk and blood pressure in adulthood. European Journal of Epidemiology, 2020, 35, 685-697.	2.5	9
29	CYP17A1 deficient XY mice display susceptibility to atherosclerosis, altered lipidomic profile and atypical sex development. Scientific Reports, 2020, 10, 8792.	1.6	19
30	Evaluating drug targets through human loss-of-function genetic variation. Nature, 2020, 581, 459-464.	13.7	115
31	The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 2020, 581, 434-443.	13.7	6,140
32	Transcript expression-aware annotation improves rare variant interpretation. Nature, 2020, 581, 452-458.	13.7	142
33	Genomewide Association Study of Severe Covid-19 with Respiratory Failure. New England Journal of Medicine, 2020, 383, 1522-1534.	13.9	1,548
34	White Blood Cells and Blood Pressure. Circulation, 2020, 141, 1307-1317.	1.6	125
35	Dare to Compare. Development of Atherosclerotic Lesions in Human, Mouse, and Zebrafish. Frontiers in Cardiovascular Medicine, 2020, 7, 109.	1.1	15
36	miR-128a Acts as a Regulator in Cardiac Development by Modulating Differentiation of Cardiac Progenitor Cell Populations. International Journal of Molecular Sciences, 2020, 21, 1158.	1.8	10

#	Article	IF	CITATIONS
37	Genetics of educational attainment and coronary risk in Mendelian randomization studies. European Heart Journal, 2020, 41, 894-895.	1.0	5
38	Sharing lessons learnt across European cardiovascular research consortia. Drug Discovery Today, 2020, 25, 787-792.	3.2	1
39	A missense variant in Mitochondrial Amidoxime Reducing Component 1 gene and protection against liver disease. PLoS Genetics, 2020, 16, e1008629.	1.5	101
40	Current Developments of Clinical Sequencing and the Clinical Utility of Polygenic Risk Scores in Inflammatory Diseases. Frontiers in Immunology, 2020, 11, 577677.	2.2	2
41	Population Bias in Polygenic Risk Prediction Models for Coronary Artery Disease. Circulation Genomic and Precision Medicine, 2020, 13, e002932.	1.6	30
42	Genetics of (Premature) Coronary Artery Disease. , 2020, , 413-430.		0
43	Associations of autozygosity with a broad range of human phenotypes. Nature Communications, 2019, 10, 4957.	5.8	84
44	LDL triglycerides, hepatic lipase activity, and coronary artery disease: An epidemiologic and Mendelian randomization study. Atherosclerosis, 2019, 282, 37-44.	0.4	38
45	CARDIoGRAM celebrates its 10th Anniversary. European Heart Journal, 2019, 40, 1664-1666.	1.0	5
46	Genetically modulated educational attainment and coronary disease risk. European Heart Journal, 2019, 40, 2413-2420.	1.0	32
47	Rare Protein-Truncating Variants in <i>APOB</i> , Lower Low-Density Lipoprotein Cholesterol, and Protection Against Coronary Heart Disease. Circulation Genomic and Precision Medicine, 2019, 12, e002376.	1.6	57
48	MicroRNAs and regulation of cardiometabolic phenotypes: novel insights into the complexity of genome-wide association studies loci. Cardiovascular Research, 2019, 115, 1570-1571.	1.8	1
49	A familial congenital heart disease with a possible multigenic origin involving a mutation in BMPR1A. Scientific Reports, 2019, 9, 2959.	1.6	14
50	Assessing the causal association of glycine with risk of cardio-metabolic diseases. Nature Communications, 2019, 10, 1060.	5.8	85
51	Association of the coronary artery disease risk gene GUCY1A3 with ischaemic events after coronary intervention. Cardiovascular Research, 2019, 115, 1512-1518.	1.8	15
52	Polymorphisms in the Mitochondrial Genome Are Associated With Bullous Pemphigoid in Germans. Frontiers in Immunology, 2019, 10, 2200.	2.2	4
53	Meta-analysis of genome-wide association studies of aggressive and chronic periodontitis identifies two novel risk loci. European Journal of Human Genetics, 2019, 27, 102-113.	1.4	58
54	DNA Sequence Variation in <i>ACVR1C</i> Encoding the Activin Receptor-Like Kinase 7 Influences Body Fat Distribution and Protects Against Type 2 Diabetes. Diabetes, 2019, 68, 226-234.	0.3	31

#	Article	IF	CITATIONS
55	Association of the PHACTR1/EDN1 Genetic Locus With Spontaneous Coronary Artery Dissection. Journal of the American College of Cardiology, 2019, 73, 58-66.	1.2	147
56	Network analysis of coronary artery disease risk genes elucidates disease mechanisms and druggable targets. Scientific Reports, 2018, 8, 3434.	1.6	43
57	Genome-Wide Association and Functional Studies Identify <i>SCML4</i> and <i>THSD7A</i> as Novel Susceptibility Genes for Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 964-975.	1.1	32
58	Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease. Nature Communications, 2018, 9, 1613.	5.8	78
59	Etidronate prevents dystrophic cardiac calcification by inhibiting macrophage aggregation. Scientific Reports, 2018, 8, 5812.	1.6	13
60	A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovascular Research, 2018, 114, 1241-1257.	1.8	217
61	Phenotypic Consequences of a Genetic Predisposition to Enhanced Nitric Oxide Signaling. Circulation, 2018, 137, 222-232.	1.6	87
62	A1268 Association of Serum Levels of Asymmetric Dimethylarginine with Essential Hypertension in Sudanese Patients. Journal of Hypertension, 2018, 36, e9-e10.	0.3	0
63	Association of Genetic Variation at AQP4 Locus with Vascular Depression. Biomolecules, 2018, 8, 164.	1.8	14
64	Lp-PLA2, scavenger receptor class B type I gene (SCARB1) rs10846744 variant, and cardiovascular disease. PLoS ONE, 2018, 13, e0204352.	1.1	2
65	Genetic Susceptibility Loci for Cardiovascular Disease and Their Impact on Atherosclerotic Plaques. Circulation Genomic and Precision Medicine, 2018, 11, e002115.	1.6	20
66	Druggability of Coronary Artery Disease Risk Loci. Circulation Genomic and Precision Medicine, 2018, 11, e001977.	1.6	18
67	Genome-wide association meta-analysis of coronary artery disease and periodontitis reveals a novel shared risk locus. Scientific Reports, 2018, 8, 13678.	1.6	35
68	Mental Health and Psychosocial Functioning Over the Lifespan of German Patients Undergoing Cardiac Catheterization for Coronary Artery Disease. Frontiers in Psychiatry, 2018, 9, 338.	1.3	4
69	Utilization of Mental Health Care, Treatment Patterns, and Course of Psychosocial Functioning in Northern German Coronary Artery Disease Patients with Depressive and/or Anxiety Disorders. Frontiers in Psychiatry, 2018, 9, 75.	1.3	6
70	Reversal of Agingâ€Induced Increases in Aortic Stiffness by Targeting Cytoskeletal Proteinâ€Protein Interfaces. Journal of the American Heart Association, 2018, 7, .	1.6	17
71	CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis. Journal of Clinical Investigation, 2018, 128, 1106-1124.	3.9	209
72	Genome-wide association study in takotsubo syndrome — Preliminary results and future directions. International Journal of Cardiology, 2017, 236, 335-339.	0.8	34

#	Article	IF	CITATIONS
73	Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated WithÂCoronary ArteryÂDisease. Journal of the American College of Cardiology, 2017, 69, 823-836.	1.2	214
74	Pyrophosphate Supplementation Prevents Chronic and Acute Calcification in ABCC6-Deficient Mice. American Journal of Pathology, 2017, 187, 1258-1272.	1.9	59
75	Sex in basic research: concepts in the cardiovascular field. Cardiovascular Research, 2017, 113, 711-724.	1.8	113
76	Functional Characterization of the <i>GUCY1A3</i> Coronary Artery Disease Risk Locus. Circulation, 2017, 136, 476-489.	1.6	84
77	Loss of Cardioprotective Effects at the <i>ADAMTS7</i> Locus as a Result of Gene-Smoking Interactions. Circulation, 2017, 135, 2336-2353.	1.6	51
78	A genome-wide association study identifies nucleotide variants at SIGLEC5 and DEFA1A3 as risk loci for periodontitis. Human Molecular Genetics, 2017, 26, 2577-2588.	1.4	87
79	Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nature Genetics, 2017, 49, 1113-1119.	9.4	260
80	Causal Effect of Plasminogen Activator Inhibitor Type 1 on Coronary Heart Disease. Journal of the American Heart Association, 2017, 6, .	1.6	89
81	ANGPTL3 Deficiency and Protection Against Coronary Artery Disease. Journal of the American College of Cardiology, 2017, 69, 2054-2063.	1.2	348
82	Additional Candidate Genes for Human Atherosclerotic Disease Identified Through Annotation Based on Chromatin Organization. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	17
83	PSeudoautosomal region 1 and predisposition to coronary artery disease. Atherosclerosis, 2017, 263, e84.	0.4	0
84	Genetic and functional interaction of the coronary artery disease risk gene ADAMTS7 with LDL-cholesterol. Atherosclerosis, 2017, 263, e34.	0.4	0
85	A genomic exploration identifies mechanisms that may explain adverse cardiovascular effects of COX-2 inhibitors. Scientific Reports, 2017, 7, 10252.	1.6	16
86	Coronary artery disease associated gene Phactr1 modulates severity of vascular calcification inÂvitro. Biochemical and Biophysical Research Communications, 2017, 491, 396-402.	1.0	32
87	Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nature Genetics, 2017, 49, 1385-1391.	9.4	571
88	Rheumatoid Arthritis and Coronary Artery Disease: Genetic Analyses Do Not Support a Causal Relation. Journal of Rheumatology, 2017, 44, 4-10.	1.0	9
89	Association of NOS3 gene polymorphisms with essential hypertension in Sudanese patients: a case control study. BMC Medical Genetics, 2017, 18, 128.	2.1	29
90	Genomic correlates of glatiramer acetate adverse cardiovascular effects lead to a novel locus mediating coronary risk. PLoS ONE, 2017, 12, e0182999.	1.1	5

#	Article	IF	CITATIONS
91	Common and Rare Genetic Variation in <i>CCR2</i> , <i>CCR5</i> , or <i>CX3CR1</i> and Risk of Atherosclerotic Coronary Heart Disease and Glucometabolic Traits. Circulation: Cardiovascular Genetics, 2016, 9, 250-258.	5.1	20
92	Coding Variation in <i>ANGPTL4,LPL,</i> and <i>SVEP1</i> and the Risk of Coronary Disease. New England Journal of Medicine, 2016, 374, 1134-1144.	13.9	427
93	Cystatin C and Cardiovascular Disease. Journal of the American College of Cardiology, 2016, 68, 934-945.	1.2	109
94	Coronary Artery Ectasia Are Frequently Observed in Patients With Bicuspid Aortic Valves With and Without Dilatation of the Ascending Aorta. Circulation: Cardiovascular Interventions, 2016, 9, .	1.4	15
95	The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nature Genetics, 2016, 48, 1171-1184.	9.4	362
96	Proatherosclerotic Effect of the α1-Subunit of Soluble Guanylyl Cyclase by Promoting Smooth Muscle Phenotypic Switching. American Journal of Pathology, 2016, 186, 2220-2231.	1.9	19
97	No Association of Coronary Artery Disease with X-Chromosomal Variants in Comprehensive International Meta-Analysis. Scientific Reports, 2016, 6, 35278.	1.6	25
98	A genomic approach to therapeutic target validation identifies a glucose-lowering <i>GLP1R</i> variant protective for coronary heart disease. Science Translational Medicine, 2016, 8, 341ra76.	5.8	100
99	Platelet-Related Variants Identified by Exomechip Meta-analysis in 157,293 Individuals. American Journal of Human Genetics, 2016, 99, 40-55.	2.6	82
100	Serum microRNA-1233 is a specific biomarker for diagnosing acute pulmonary embolism. Journal of Translational Medicine, 2016, 14, 120.	1.8	36
101	Stimulators of the soluble guanylyl cyclase: promising functional insights from rare coding atherosclerosis-related GUCY1A3 variants. Basic Research in Cardiology, 2016, 111, 51.	2.5	20
102	Systematic analysis of variants related to familial hypercholesterolemia in families with premature myocardial infarction. European Journal of Human Genetics, 2016, 24, 191-197.	1.4	70
103	Knock-out of nexilin in mice leads to dilated cardiomyopathy and endomyocardial fibroelastosis. Basic Research in Cardiology, 2016, 111, 6.	2.5	27
104	Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science, 2016, 351, 1166-1171.	6.0	438
105	Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nature Communications, 2016, 7, 10023.	5.8	412
106	Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease. Nature Communications, 2016, 7, 10558.	5.8	108
107	Classification of ADAMTS binding sites: The first step toward selective ADAMTS7 inhibitors. Biochemical and Biophysical Research Communications, 2016, 471, 380-385.	1.0	7

108 Genetics of (Premature) Coronary Artery Disease. , 2016, , 355-371.

#	Article	IF	CITATIONS
109	Molecular Variants of Soluble Guanylyl Cyclase Affecting Cardiovascular Risk. Circulation Journal, 2015, 79, 463-469.	0.7	10
110	Functional evaluation of GUCY1A3 mutations associated with myocardial infarction risk. BMC Pharmacology & Toxicology, 2015, 16, .	1.0	1
111	The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. PLoS Genetics, 2015, 11, e1005378.	1.5	331
112	Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation. PLoS Genetics, 2015, 11, e1005230.	1.5	77
113	Identification of a single SNP that affects the LH-beta promoter activity in the Moroccan prolific D'man breed1. Journal of Animal Science, 2015, 93, 2064-2073.	0.2	5
114	Systems Genetics Analysis of Genome-Wide Association Study Reveals Novel Associations Between Key Biological Processes and Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1712-1722.	1.1	72
115	Cenetic variants associated with celiac disease and the risk for coronary artery disease. Molecular Genetics and Genomics, 2015, 290, 1911-1917.	1.0	9
116	Dissecting the Roles of MicroRNAs in Coronary Heart Disease via Integrative Genomic Analyses. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1011-1021.	1.1	53
117	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	13.7	3,823
118	Psoriasis and Cardiometabolic Traits: Modest Association but Distinct Genetic Architectures. Journal of Investigative Dermatology, 2015, 135, 1283-1293.	0.3	56
119	New insights into the genetics of X-linked dystonia-parkinsonism (XDP, DYT3). European Journal of Human Genetics, 2015, 23, 1334-1340.	1.4	73
120	Shared Genetic Aetiology of Coronary Artery Disease and Atherosclerotic Stroke—2015. Current Atherosclerosis Reports, 2015, 17, 498.	2.0	8
121	Genetic variants primarily associated with type 2 diabetes are related to coronary artery disease risk. Atherosclerosis, 2015, 241, 419-426.	0.4	26
122	Runs of Homozygosity: Association with Coronary Artery Disease and Gene Expression in Monocytes and Macrophages. American Journal of Human Genetics, 2015, 97, 228-237.	2.6	37
123	Two polymorphisms in the Cx40 promoter are associated with hypertension and left ventricular hypertrophy preferentially in men. Clinical and Experimental Hypertension, 2015, 37, 580-586.	O.5	9
124	Role of sGC-dependent NO signalling and myocardial infarction risk. Journal of Molecular Medicine, 2015, 93, 383-394.	1.7	22
125	Genetic Evidence for <i>PLASMINOGEN</i> as a Shared Genetic Risk Factor of Coronary Artery Disease and Periodontitis. Circulation: Cardiovascular Genetics, 2015, 8, 159-167.	5.1	74
126	Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis. Lancet Diabetes and Endocrinology,the, 2015, 3, 243-253.	5.5	115

#	Article	IF	CITATIONS
127	The impact of low-frequency and rare variants on lipid levels. Nature Genetics, 2015, 47, 589-597.	9.4	310
128	ADAMTS-7 Inhibits Re-endothelialization of Injured Arteries and Promotes Vascular Remodeling Through Cleavage of Thrombospondin-1. Circulation, 2015, 131, 1191-1201.	1.6	125
129	Genetically Determined Height and Coronary Artery Disease. New England Journal of Medicine, 2015, 372, 1608-1618.	13.9	220
130	Circulating Brainâ€Derived Neurotrophic Factor Concentrations and the Risk of Cardiovascular Disease in the Community. Journal of the American Heart Association, 2015, 4, e001544.	1.6	107
131	Identification of a novel ovine LH-beta promoter region, which dramatically enhances its promoter activity. SpringerPlus, 2015, 4, 466.	1.2	0
132	Genetics of coronary artery disease: Short people at risk?. Expert Review of Cardiovascular Therapy, 2015, 13, 1169-1172.	0.6	5
133	Prediction of Causal Candidate Genes in Coronary Artery Disease Loci. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2207-2217.	1.1	101
134	Expression Quantitative Trait Loci Acting Across Multiple Tissues Are Enriched in Inherited Risk for Coronary Artery Disease. Circulation: Cardiovascular Genetics, 2015, 8, 305-315.	5.1	39
135	A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nature Genetics, 2015, 47, 1121-1130.	9.4	2,054
136	Genetic analysis for a shared biological basis between migraine and coronary artery disease. Neurology: Genetics, 2015, 1, e10.	0.9	61
137	Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature, 2015, 518, 102-106.	13.7	581
138	Cigarette smoking reduces DNA methylation levels at multiple genomic loci but the effect is partially reversible upon cessation. Epigenetics, 2014, 9, 1382-1396.	1.3	285
139	Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease. PLoS Genetics, 2014, 10, e1004502.	1.5	192
140	Coronary Heart Disease-Associated Variation in TCF21 Disrupts a miR-224 Binding Site and miRNA-Mediated Regulation. PLoS Genetics, 2014, 10, e1004263.	1.5	108
141	Novel Approach Identifies SNPs in SLC2A10 and KCNK9 with Evidence for Parent-of-Origin Effect on Body Mass Index. PLoS Genetics, 2014, 10, e1004508.	1.5	80
142	DNA methylation and body-mass index: a genome-wide analysis. Lancet, The, 2014, 383, 1990-1998.	6.3	686
143	Shared Genetic Susceptibility to Ischemic Stroke and Coronary Artery Disease. Stroke, 2014, 45, 24-36.	1.0	302
144	How to Include Chromosome X in Your Genomeâ€Wide Association Study. Genetic Epidemiology, 2014, 38, 97-103.	0.6	91

9

#	Article	IF	CITATIONS
145	Inactivating Mutations in <i>NPC1L1</i> and Protection from Coronary Heart Disease. New England Journal of Medicine, 2014, 371, 2072-2082.	13.9	386
146	Ultrahigh-resolution, high-speed spectral domain optical coherence phase microscopy. Optics Letters, 2014, 39, 45.	1.7	26
147	Genome-Wide Association Study of <scp>I</scp> -Arginine and Dimethylarginines Reveals Novel Metabolic Pathway for Symmetric Dimethylarginine. Circulation: Cardiovascular Genetics, 2014, 7, 864-872.	5.1	53
148	Novel Genetic Approach to Investigate the Role of Plasma Secretory Phospholipase A2 (sPLA) Tj ETQq0 0 0 rgBT / 144-150.	Overlock 3 5.1	10 Tf 50 627 22
149	Whole-exome sequencing in an extended family with myocardial infarction unmasks familial hypercholesterolemia. BMC Cardiovascular Disorders, 2014, 14, 108.	0.7	20
150	Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 2014, 46, 1173-1186.	9.4	1,818
151	SPG7 Variant Escapes Phosphorylation-Regulated Processing by AFG3L2, Elevates Mitochondrial ROS, and Is Associated with Multiple Clinical Phenotypes. Cell Reports, 2014, 7, 834-847.	2.9	39
152	Loss-of-Function Mutations in <i>APOC3,</i> Triglycerides, and Coronary Disease. New England Journal of Medicine, 2014, 371, 22-31.	13.9	936
153	Epigenetics in health and disease: heralding the EWAS era. Lancet, The, 2014, 383, 1952-1954.	6.3	73
154	Single Nucleotide Polymorphisms with Cis-Regulatory Effects on Long Non-Coding Transcripts in Human Primary Monocytes. PLoS ONE, 2014, 9, e102612.	1.1	9
155	Meta-analysis of Gene-Level Associations for Rare Variants Based on Single-Variant Statistics. American Journal of Human Genetics, 2013, 93, 236-248.	2.6	60
156	Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature, 2013, 504, 432-436.	13.7	230
157	Large-scale association analysis identifies new risk loci for coronary artery disease. Nature Genetics, 2013, 45, 25-33.	9.4	1,439
158	Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease. American Journal of Clinical Nutrition, 2013, 98, 668-676.	2.2	161
159	Forty-five years to diagnosis. Neuromuscular Disorders, 2013, 23, 503-505.	0.3	10
160	Identification of seven loci affecting mean telomere length and their association with disease. Nature Genetics, 2013, 45, 422-427.	9.4	808
161	Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nature Genetics, 2013, 45, 501-512.	9.4	578
162	Identification of heart rate–associated loci and their effects on cardiac conduction and rhythm disorders. Nature Genetics, 2013, 45, 621-631.	9.4	282

#	Article	IF	CITATIONS
163	Genetics of Coronary Artery Disease and Myocardial Infarction - 2013. Current Cardiology Reports, 2013, 15, 368.	1.3	51
164	Functional Interaction of Osteogenic Transcription Factors Runx2 and Vdr in Transcriptional Regulation of Opn during Soft Tissue Calcification. American Journal of Pathology, 2013, 183, 60-68.	1.9	22
165	Genetic Predisposition to Higher Blood Pressure Increases Coronary Artery Disease Risk. Hypertension, 2013, 61, 995-1001.	1.3	70
166	Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits. PLoS Genetics, 2013, 9, e1003500.	1.5	371
167	Gendered Innovation in Cardiovascular Science: Implementation of Sex and Gender into Clinical and Biomedical Research. Thoracic and Cardiovascular Surgeon, 2013, 61, 004-006.	0.4	2
168	Genome-Wide Haplotype Analysis of Cis Expression Quantitative Trait Loci in Monocytes. PLoS Genetics, 2013, 9, e1003240.	1.5	53
169	Multiethnic Meta-Analysis of Genome-Wide Association Studies in >100 000 Subjects Identifies 23 Fibrinogen-Associated Loci but No Strong Evidence of a Causal Association Between Circulating Fibrinogen and Cardiovascular Disease. Circulation, 2013, 128, 1310-1324.	1.6	128
170	Exome Sequencing and Directed Clinical Phenotyping Diagnose Cholesterol Ester Storage Disease Presenting as Autosomal Recessive Hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2909-2914.	1.1	87
171	Genome-wide and gene-centric analyses of circulating myeloperoxidase levels in the charge and care consortia. Human Molecular Genetics, 2013, 22, 3381-3393.	1.4	22
172	The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits. PLoS Genetics, 2012, 8, e1002793.	1.5	448
173	Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits: A Multi-Ethnic Meta-Analysis of 45,891 Individuals. PLoS Genetics, 2012, 8, e1002607.	1.5	419
174	Clinical and Genetic Association of Serum Paraoxonase and Arylesterase Activities With Cardiovascular Risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2803-2812.	1.1	153
175	Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene. Human Molecular Genetics, 2012, 21, 322-333.	1.4	100
176	Common Genetic Variation in the 3′- <i>BCL11B</i> Gene Desert Is Associated With Carotid-Femoral Pulse Wave Velocity and Excess Cardiovascular Disease Risk. Circulation: Cardiovascular Genetics, 2012, 5, 81-90.	5.1	90
177	Identification of the <i>BCAR1-CFDP1-TMEM170A</i> Locus as a Determinant of Carotid Intima-Media Thickness and Coronary Artery Disease Risk. Circulation: Cardiovascular Genetics, 2012, 5, 656-665.	5.1	47
178	Quantitative analysis of cardiomyocyte dynamics with optical coherence phase microscopy. , 2012, , .		3
179	Inheritance of coronary artery disease in men: an analysis of the role of the Y chromosome. Lancet, The, 2012, 379, 915-922.	6.3	179
180	Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet, The, 2012, 379, 1205-1213.	6.3	668

#	Article	IF	CITATIONS
181	Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet, The, 2012, 380, 572-580.	6.3	1,937
182	Genome-wide meta-analysis of common variant differences between men and women. Human Molecular Genetics, 2012, 21, 4805-4815.	1.4	33
183	FTO genotype is associated with phenotypic variability of body mass index. Nature, 2012, 490, 267-272.	13.7	383
184	Genetic Markers Enhance Coronary Risk Prediction in Men: The MORGAM Prospective Cohorts. PLoS ONE, 2012, 7, e40922.	1.1	81
185	A Genome-Wide Association Study for Coronary Artery Disease Identifies a Novel Susceptibility Locus in the Major Histocompatibility Complex. Circulation: Cardiovascular Genetics, 2012, 5, 217-225.	5.1	125
186	Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nature Genetics, 2012, 44, 890-894.	9.4	295
187	Comprehensive Exploration of the Effects of miRNA SNPs on Monocyte Gene Expression. PLoS ONE, 2012, 7, e45863.	1.1	8
188	Powerful Identification of Cis-regulatory SNPs in Human Primary Monocytes Using Allele-Specific Gene Expression. PLoS ONE, 2012, 7, e52260.	1.1	36
189	A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. European Heart Journal, 2011, 32, 1065-1076.	1.0	292
190	Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature, 2011, 478, 103-109.	13.7	1,855
191	New gene functions in megakaryopoiesis and platelet formation. Nature, 2011, 480, 201-208.	13.7	401
192	Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes. Diabetes, 2011, 60, 2624-2634.	0.3	335
193	Human metabolic individuality in biomedical and pharmaceutical research. Nature, 2011, 477, 54-60.	13.7	916
194	Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet, The, 2011, 377, 383-392.	6.3	466
195	Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nature Genetics, 2011, 43, 333-338.	9.4	1,685
196	Genome-wide association study identifies a new locus for coronary artery disease on chromosome 10p11.23. European Heart Journal, 2011, 32, 158-168.	1.0	124
197	A Genome-Wide Association Study Identifies <i>LIPA</i> as a Susceptibility Gene for Coronary Artery Disease. Circulation: Cardiovascular Genetics, 2011, 4, 403-412.	5.1	130
198	Large-Scale Gene-Centric Analysis Identifies Novel Variants for Coronary Artery Disease. PLoS Genetics, 2011, 7, e1002260.	1.5	203

#	Article	IF	CITATIONS
199	Abdominal Aortic Aneurysm Is Associated with a Variant in Low-Density Lipoprotein Receptor-Related Protein 1. American Journal of Human Genetics, 2011, 89, 619-627.	2.6	185
200	Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. BMJ: British Medical Journal, 2011, 342, d548-d548.	2.4	530
201	Novel correlations between the genotype and the phenotype of hypertrophic and dilated cardiomyopathy: results from the German Competence Network Heart Failure. European Journal of Heart Failure, 2011, 13, 1185-1192.	2.9	67
202	Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nature Genetics, 2011, 43, 1005-1011.	9.4	403
203	Integrating Genome-Wide Genetic Variations and Monocyte Expression Data Reveals Trans-Regulated Gene Modules in Humans. PLoS Genetics, 2011, 7, e1002367.	1.5	126
204	RANTES/CCL5 and Risk for Coronary Events: Results from the MONICA/KORA Augsburg Case-Cohort, Athero-Express and CARDIoGRAM Studies. PLoS ONE, 2011, 6, e25734.	1.1	40
205	Genetics of (Premature) Coronary Artery Disease. , 2011, , 369-383.		0
206	Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 2010, 466, 707-713.	13.7	3,249
207	A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature, 2010, 467, 460-464.	13.7	271
208	Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature, 2010, 467, 832-838.	13.7	1,789
209	Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 2010, 42, 937-948.	9.4	2,634
210	Genetic Causes of Myocardial Infarction. Deutsches Ärzteblatt International, 2010, 107, 694-9.	0.6	27
211	Common Variants at 10 Genomic Loci Influence Hemoglobin A1C Levels via Glycemic and Nonglycemic Pathways. Diabetes, 2010, 59, 3229-3239.	0.3	387
212	Genetics of myocardial infarction: a progress report. European Heart Journal, 2010, 31, 918-925.	1.0	90
213	Genetic Association Study Identifies HSPB7 as a Risk Gene for Idiopathic Dilated Cardiomyopathy. PLoS Genetics, 2010, 6, e1001167.	1.5	110
214	Lack of Association Between the Trp719Arg Polymorphism in Kinesin-Like Protein-6 and Coronary Artery Disease in 19 Case-Control Studies. Journal of the American College of Cardiology, 2010, 56, 1552-1563.	1.2	84
215	Genetic Regulation of Serum Phytosterol Levels and Risk of Coronary Artery Disease. Circulation: Cardiovascular Genetics, 2010, 3, 331-339.	5.1	141
216	Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease. Atherosclerosis, 2010, 208, 183-189.	0.4	141

#	Article	IF	CITATIONS
217	Myeloid CD34+CD13+ Precursor Cells Transdifferentiate into Chondrocyte-Like Cells in Atherosclerotic Intimal Calcification. American Journal of Pathology, 2010, 177, 473-480.	1.9	35
218	Design of the Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Study. Circulation: Cardiovascular Genetics, 2010, 3, 475-483.	5.1	159
219	Genetic Variants Associated With Cardiac Structure and Function. JAMA - Journal of the American Medical Association, 2009, 302, 168.	3.8	202
220	Genetic Loci Associated With C-Reactive Protein Levels and Risk of Coronary Heart Disease. JAMA - Journal of the American Medical Association, 2009, 302, 37.	3.8	544
221	A Genome-Wide Association Study Reveals Variants in ARL15 that Influence Adiponectin Levels. PLoS Genetics, 2009, 5, e1000768.	1.5	148
222	Genetic Determinants of Circulating Sphingolipid Concentrations in European Populations. PLoS Genetics, 2009, 5, e1000672.	1.5	184
223	Genetik des Herzinfarktes. Der lange Weg von der positiven Familienanamnese zum Gen. Chemie in Unserer Zeit, 2009, 43, 288-295.	0.1	0
224	The impact of newly identified loci on coronary heart disease, stroke and total mortality in the MORGAM prospective cohorts. Genetic Epidemiology, 2009, 33, 237-246.	0.6	77
225	Genetic basis of myocardial infarction: Novel insights from genome-wide association studies. Current Cardiovascular Risk Reports, 2009, 3, 426-433.	0.8	2
226	New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nature Genetics, 2009, 41, 280-282.	9.4	440
227	Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nature Genetics, 2009, 41, 283-285.	9.4	427
228	Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nature Genetics, 2009, 41, 334-341.	9.4	990
229	A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nature Genetics, 2009, 41, 1182-1190.	9.4	481
230	Nexilin mutations destabilize cardiac Z-disks and lead to dilated cardiomyopathy. Nature Medicine, 2009, 15, 1281-1288.	15.2	180
231	Polymorphisms in the promoter region of the dimethylarginine dimethylaminohydrolase 2 gene are associated with prevalence of hypertension. Pharmacological Research, 2009, 60, 488-493.	3.1	27
232	Lack of Association Between a Common Polymorphism Near the <i>INSIG2</i> Gene and BMI, Myocardial Infarction, and Cardiovascular Risk Factors. Obesity, 2009, 17, 1390-1395.	1.5	12
233	Macrophage cholesterol efflux correlates with lipoprotein subclass distribution and risk of obstructive coronary artery disease in patients undergoing coronary angiography. Lipids in Health and Disease, 2009, 8, 14.	1.2	32
234	A novel variant on chromosome 7q22.3 associated with mean platelet volume, counts, and function. Blood, 2009, 113, 3831-3837.	0.6	117

#	Article	IF	CITATIONS
235	Common Polymorphisms Influencing Serum Uric Acid Levels Contribute to Susceptibility to Gout, but Not to Coronary Artery Disease. PLoS ONE, 2009, 4, e7729.	1.1	90
236	Lack of association of genetic variants in the LRP8 gene with familial and sporadic myocardial infarction. Journal of Molecular Medicine, 2008, 86, 1163-1170.	1.7	6
237	The novel genetic variant predisposing to coronary artery disease in the region of the PSRC1 and CELSR2 genes on chromosome 1 associates with serum cholesterol. Journal of Molecular Medicine, 2008, 86, 1233-1241.	1.7	80
238	Coronary Artery Disease–Associated Locus on Chromosome 9p21 and Early Markers of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1679-1683.	1.1	80
239	Molecular Signatures of Cardiovascular Disease Risk. Molecular Diagnosis and Therapy, 2008, 12, 281-287.	1.6	6
240	SNPtoGO: characterizing SNPs by enriched GO terms. Bioinformatics, 2008, 24, 146-148.	1.8	24
241	An Alternative Splice Variant in Abcc6, the Gene Causing Dystrophic Calcification, Leads to Protein Deficiency in C3H/He Mice. Journal of Biological Chemistry, 2008, 283, 7608-7615.	1.6	54
242	Characterization of the GNAQ promoter and association of increased Gq expression with cardiac hypertrophy in humans. European Heart Journal, 2008, 29, 888-897.	1.0	33
243	Lack of Association Between the <i>MEF2A</i> Gene and Myocardial Infarction. Circulation, 2008, 117, 185-191.	1.6	44
244	Repeated Replication and a Prospective Meta-Analysis of the Association Between Chromosome 9p21.3 and Coronary Artery Disease. Circulation, 2008, 117, 1675-1684.	1.6	356
245	Association between <i>PPAR</i> α gene polymorphisms and myocardial infarction. Clinical Science, 2008, 115, 301-308.	1.8	17
246	Genetic variation in the arachidonate 5-lipoxygenase-activating protein (<i>ALOX5AP</i>) is associated with myocardial infarction in the German population. Clinical Science, 2008, 115, 309-315.	1.8	32
247	Association of Common Polymorphisms in GLUT9 Gene with Gout but Not with Coronary Artery Disease in a Large Case-Control Study. PLoS ONE, 2008, 3, e1948.	1.1	75
248	Lifelong Reduction of LDL-Cholesterol Related to a Common Variant in the LDL-Receptor Gene Decreases the Risk of Coronary Artery Disease—A Mendelian Randomisation Study. PLoS ONE, 2008, 3, e2986.	1.1	137
249	Ultrafine mapping of Dyscalc1 to an 80-kb chromosomal segment on chromosome 7 in mice susceptible for dystrophic calcification. Physiological Genomics, 2007, 28, 203-212.	1.0	25
250	Genomewide Association Analysis of Coronary Artery Disease. New England Journal of Medicine, 2007, 357, 443-453.	13.9	1,865
251	Familial aggregation of left main coronary artery disease and future risk of coronary events in asymptomatic siblings of affected patients. European Heart Journal, 2007, 28, 2432-2437.	1.0	49
252	Epistatic interaction between haplotypes of the ghrelin ligand and receptor genes influence susceptibility to myocardial infarction and coronary artery disease. Human Molecular Genetics, 2007, 16, 887-899.	1.4	35

#	Article	IF	CITATIONS
253	The common Y402H variant in complement factor H gene is not associated with susceptibility to myocardial infarction and its related risk factors. Clinical Science, 2007, 113, 213-218.	1.8	24
254	Association between arterial pressure and coronary artery calcification. Journal of Hypertension, 2007, 25, 1731-1738.	0.3	23
255	Impact of Diabetes on QT Dynamicity in Patients With and Without Myocardial Infarction: The KORA Family Heart Study. PACE - Pacing and Clinical Electrophysiology, 2007, 30, S183-7.	0.5	5
256	Robust association of the APOE ?4 allele with premature myocardial infarction especially in patients without hypercholesterolaemia: the Aachen study. European Journal of Clinical Investigation, 2007, 37, 106-108.	1.7	13
257	Lymphotoxin-α and galectin-2 SNPs are not associated with myocardial infarction in two different German populations. Journal of Molecular Medicine, 2007, 85, 997-1004.	1.7	25
258	A locus on chromosome 10 influences C-reactive protein levels in two independent populations. Human Genetics, 2007, 122, 95-102.	1.8	9
259	Genetics and heritability of coronary artery disease and myocardial infarction. Clinical Research in Cardiology, 2007, 96, 1-7.	1.5	132
260	Novel missense mutations (p.T596M and p.P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochemical and Biophysical Research Communications, 2006, 345, 1460-1465.	1.0	206
261	No association of the CYP3A5*1 allele with blood pressure and left ventricular mass and geometry: the KORA/MONICA Augsburg echocardiographic substudy. Clinical Science, 2006, 111, 365-372.	1.8	12
262	Association of a functional polymorphism in the CYP4A11 gene with systolic blood pressure in survivors of myocardial infarction. Journal of Hypertension, 2006, 24, 1965-1970.	0.3	42
263	Arterial calcification in mice after freeze-thaw injury. Annals of Anatomy, 2006, 188, 235-242.	1.0	12
264	Genetic Factors for Overweight and CAD. Herz, 2006, 31, 189-199.	0.4	9
265	Association of angiotensin-converting enzyme 2 (ACE2) gene polymorphisms with parameters of left ventricular hypertrophy in men. Journal of Molecular Medicine, 2006, 84, 88-96.	1.7	95
266	Association of low-grade urinary albumin excretion with left ventricular hypertrophy in the general population. Nephrology Dialysis Transplantation, 2006, 21, 2780-2787.	0.4	70
267	Association of the Ghrelin Receptor Gene Region With Left Ventricular Hypertrophy in the General Population. Hypertension, 2006, 47, 920-927.	1.3	26
268	APOE alleles are not associated with calcific aortic stenosis. Heart, 2006, 92, 1463-1466.	1.2	19
269	Intronic ANG II type 2 receptor gene polymorphism 1675 G/A modulates receptor protein expression but not mRNA splicing. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1729-R1735.	0.9	34
270	Ahnak is critical for cardiac Ca(v)1.2 calcium channel function and its βâ€adrenergic regulation. FASEB Journal, 2005, 19, 1969-1977.	0.2	69

#	Article	IF	CITATIONS
271	Association of the T8590C Polymorphism of CYP4A11 With Hypertension in the MONICA Augsburg Echocardiographic Substudy. Hypertension, 2005, 46, 766-771.	1.3	80
272	Distinct Heritable Patterns of Angiographic Coronary Artery Disease in Families With Myocardial Infarction. Circulation, 2005, 111, 855-862.	1.6	153
273	Genetic Linkage and Association of the Growth Hormone Secretagogue Receptor (Ghrelin Receptor) Gene in Human Obesity. Diabetes, 2005, 54, 259-267.	0.3	90
274	The assertion that a G21V mutation in AGTR2 causes mental retardation is not supported by other studies. Human Genetics, 2004, 114, 396-396.	1.8	11
275	KCNJ11 polymorphisms and sudden cardiac death in patients with acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 2004, 36, 287-293.	0.9	27
276	No association of interleukin-6 gene polymorphism (â^'174 G/C) with myocardial infarction or traditional cardiovascular risk factors. International Journal of Cardiology, 2004, 97, 205-212.	0.8	71
277	Lack of association of a 9Âbp insertion/deletion polymorphism within the bradykinin 2 receptor gene with myocardial infarction. Clinical Science, 2004, 107, 505-511.	1.8	12
278	Mutation spectrum in a large cohort of unrelated consecutive patients with hypertrophic cardiomyopathy. Clinical Genetics, 2003, 64, 339-349.	1.0	192
279	Angiotensin converting enzyme gene polymorphism and myocardial infarction a large association and linkage study. International Journal of Biochemistry and Cell Biology, 2003, 35, 955-962.	1.2	19
280	A common polymorphism in KCNH2 (HERG) hastens cardiac repolarization. Cardiovascular Research, 2003, 59, 27-36.	1.8	156
281	Well kept secrets of the genome. European Heart Journal, 2003, 24, 501-503.	1.0	1
282	Outcome of clinical versus genetic family screening in hypertrophic cardiomyopathy with focus on cardiac beta-myosin gene mutations Prediction of clinical status—is molecular genetics a new tool for the management of hypertrophic cardiomyopathy in clinical practice?. Cardiovascular Research, 2003, 57, 298-301.	1.8	2
283	Peroxisome Proliferator–Activated Receptor α Gene Regulates Left Ventricular Growth in Response to Exercise and Hypertension. Circulation, 2002, 105, 950-955.	1.6	149
284	Relation of the G Protein β 3 -Subunit Polymorphism With Left Ventricle Structure and Function. Hypertension, 2002, 40, 162-167.	1.3	19
285	Angiotensin II type 2 receptor gene polymorphism and cardiovascular phenotypes: the GLAECO and GLAOLD studies. European Journal of Heart Failure, 2002, 4, 707-712.	2.9	36
286	Novel mutations in sarcomeric protein genes in dilated cardiomyopathy. Biochemical and Biophysical Research Communications, 2002, 298, 116-120.	1.0	139
287	Effect of the angiotensin II type 2-receptor gene (+1675 G/A) on left ventricular structure in humans. Journal of the American College of Cardiology, 2001, 37, 175-182.	1.2	84
288	Aldosterone synthase (CYP11B2) â^'344 C/T polymorphism is associated with left ventricular structure in human arterial hypertension. Journal of the American College of Cardiology, 2001, 37, 878-884.	1.2	48

#	Article	IF	CITATIONS
289	Spectrum of clinical phenotypes and gene variants in cardiac myosin-binding protein C mutation carriers with hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 2001, 38, 322-330.	1.2	125
290	Bradykinin B2BKR receptor polymorphism and left-ventricular growth response. Lancet, The, 2001, 358, 1155-1156.	6.3	103
291	Identification of genetic variants (g789C>T and G111S) in the human HSPB2 gene. Human Mutation, 2001, 17, 81-81.	1.1	0
292	Lack of association between polymorphisms of angiotensin II receptor genes and response to short-term angiotensin II infusion. Journal of Hypertension, 2000, 18, 1573-1578.	0.3	13
293	Functional gene testing of the Glu298Asp polymorphism of the endothelial NO synthase. Journal of Hypertension, 2000, 18, 1767-1773.	0.3	69
294	Evaluation of three polymorphisms in the promoter region of the angiotensin II type I receptor gene. Journal of Hypertension, 2000, 18, 267-272.	0.3	38
295	Investigation of the human serotonin 6 (5-HT6) receptor gene in bipolar affective disorder and schizophrenia. , 2000, 96, 217-221.		62
296	Novel intronic polymorphism (+1675G/A) in the human angiotensin II subtype 2 receptor gene. , 2000, 15, 487-487.		23
297	Five novel genetic variants in the promoter and coding region of the ?B-crystallin gene (CRYAB): -652G>A, -650C>G, -249G>C, S41Y, P51L. Human Mutation, 2000, 16, 374-374.	1.1	7
298	Genetic variants in the promoter (g983G>T) and coding region (A92T) of the human cardiotrophin-1 gene (CTF1) in patients with dilated cardiomyopathy. Human Mutation, 2000, 16, 448-448.	1.1	17
299	Novel Mutation in the $\hat{I}\pm$ -Tropomyosin Gene and Transition From Hypertrophic to Hypocontractile Dilated Cardiomyopathy. Circulation, 2000, 102, E112-6.	1.6	81
300	Screening the human bradykinin B2 receptor gene in patients with cardiovascular diseases: Identification of a functional mutation in the promoter and a new coding variant (T21M). American Journal of Medical Genetics Part A, 1998, 80, 521-525.	2.4	21
301	Cloning and Characterization of the 5â€2-Flanking Region of the Human Cardiotrophin-1 Gene. Biochemical and Biophysical Research Communications, 1998, 244, 494-497.	1.0	11
302	Common polymorphisms in the cannabinoid CB2 receptor gene (CNR2) are not associated with myocardial infarction and cardiovascular risk factors. International Journal of Molecular Medicine, 1998, 22, 165.	1.8	4
303	Assignment of the human serotonin 1F receptor gene (HTR1F) to the short arm of chromosome 3 (3p13-p14.1). Molecular Membrane Biology, 1997, 14, 133-135.	2.0	5
304	Human 5-HT5AReceptor Gene: Systematic Screening for DNA Sequence Variation and Linkage Mapping on Chromosome 7q34–q36 Using a Polymorphism in the 5′ Untranslated Region. Biochemical and Biophysical Research Communications, 1997, 233, 6-9.	1.0	22
305	5-HT2A receptor and bipolar affective disorder: association studies in affected patients. Neuroscience Letters, 1997, 224, 95-98.	1.0	53
306	Systematic screening for mutations in the human serotonin-2A (5-HT2A) receptor gene: Identification of two naturally occurring receptor variants and association analysis in schizophrenia. Human Genetics, 1996, 97, 614-619.	1.8	193

#	Article	IF	CITATIONS
307	Systematic screening for mutations in the human serotonin 1F receptor gene in patients with bipolar affective disorder and schizophrenia. , 1996, 67, 225-228.		17
308	Systematic screening for mutations in the human serotonin-2A (5-HT 2A) receptor gene: identification of two naturally occurring receptor variants and association analysis in schizophrenia. Human Genetics, 1996, 97, 614-619.	1.8	15
309	Systematic screening for mutations in the promoter and the coding region of the 5-HT1A gene. American Journal of Medical Genetics Part A, 1995, 60, 393-399.	2.4	61
310	Binding properties of the naturally occurring human 5-HT1A receptor variant with the Ile28Val substitution in the extracellular domain. Naunyn-Schmiedeberg's Archives of Pharmacology, 1995, 352, 455-8.	1.4	14
311	Lack of genetically determined structural variants of the human serotonin-1E (5-HT1E) receptor protein points to its evolutionary conservation. Molecular Brain Research, 1995, 29, 387-390.	2.5	22
312	Genetic variation of the 5-HT2A receptor and response to clozapine. Lancet, The, 1995, 346, 908-909.	6.3	110
313	Detection of four polymorphic sites in the human dopamine D1 receptor gene (DRD1). Human Molecular Genetics, 1994, 3, 209-209.	1.4	61
314	Identification of Genetic Variation in the Human Serotonin 1Dβ Receptor Gene. Biochemical and Biophysical Research Communications, 1994, 205, 1194-1200.	1.0	64
315	Retrospective study of the parental origin of the extra chromosome in trisomy 18 (Edwards) Tj ETQq1 1 0.78431	4 rgBT /O\ 1.8	verlock 10 Tf
316	Mutation in the β amyloid precursor protein gene and schizophrenia. Biological Psychiatry, 1993, 34, 502.	0.7	3
317	Dinucleotide repeat polymorphism at the D18S99 locus. Human Molecular Genetics, 1993, 2, 91-91.	1.4	0
318	Dinucleotide repeat polymorphism at the D18S365 locus. Human Molecular Genetics, 1993, 2, 1747-1747.	1.4	0