Bang Chul Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4543309/publications.pdf

Version: 2024-02-01

304743 315739 2,192 196 22 38 citations h-index g-index papers 197 197 197 1417 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multi-user diversity in a spectrum sharing system. IEEE Transactions on Wireless Communications, 2009, 8, 102-106.	9.2	245
2	Recursive Pseudo-Bayesian Access Class Barring for M2M Communications in LTE Systems. IEEE Transactions on Vehicular Technology, 2017, 66, 8595-8599.	6.3	90
3	Opportunistic Interference Alignment for Interference-Limited Cellular TDD Uplink. IEEE Communications Letters, 2011, 15, 148-150.	4.1	87
4	Optimal modulation and coding scheme selection in cellular networks with hybrid-ARQ error control. IEEE Transactions on Wireless Communications, 2008, 7, 5195-5201.	9.2	76
5	Opportunistic Interference Alignment for MIMO Interfering Multiple-Access Channels. IEEE Transactions on Wireless Communications, 2013, 12, 2180-2192.	9.2	73
6	Opportunistic Interference Mitigation Achieves Optimal Degrees-of-Freedom in Wireless Multi-Cell Uplink Networks. IEEE Transactions on Communications, 2012, 60, 1935-1944.	7.8	69
7	BER Performance of Uplink NOMA With Joint Maximum-Likelihood Detector. IEEE Transactions on Vehicular Technology, 2019, 68, 10295-10300.	6.3	69
8	Performance Analysis of NOMA Random Access. IEEE Communications Letters, 2018, 22, 2242-2245.	4.1	51
9	Nonorthogonal Random Access for 5G Mobile Communication Systems. IEEE Transactions on Vehicular Technology, 2018, 67, 7867-7871.	6.3	46
10	Opportunistic Underlay Transmission in Multi-Carrier Cognitive Radio Systems. , 2009, , .		45
11	Opportunistic Downlink Interference Alignment for Multi-Cell MIMO Networks. IEEE Transactions on Wireless Communications, 2017, 16, 1533-1548.	9.2	41
12	Performance Analysis of Two Relay Selection Schemes for Cooperative Diversity., 2007,,.		34
13	A Tradeoff Between Single-User and Multi-User MIMO Schemes in Multi-Rate Uplink WLANs. IEEE Transactions on Wireless Communications, 2011, 10, 3332-3342.	9.2	34
14	A MIMO-Based Collision Mitigation Scheme in Uplink WLANs. IEEE Communications Letters, 2008, 12, 417-419.	4.1	29
15	Machine Learning Based Blind Decoding for Space–Time Line Code (STLC) Systems. IEEE Transactions on Vehicular Technology, 2019, 68, 5154-5158.	6.3	29
16	A cooperative phase steering scheme in multi-relay node environments. IEEE Transactions on Wireless Communications, 2009, 8, 72-77.	9.2	28
17	On the Multi-User Diversity with Secrecy in Uplink Wiretap Networks. IEEE Communications Letters, 2013, 17, 1778-1781.	4.1	28
18	Fundamental Limits of CDF-Based Scheduling: Throughput, Fairness, and Feedback Overhead. IEEE/ACM Transactions on Networking, 2015, 23, 894-907.	3.8	27

#	Article	lF	CITATIONS
19	Double Space–Time Line Codes. IEEE Transactions on Vehicular Technology, 2020, 69, 2316-2321.	6.3	27
20	Space–Time Line Code for Enhancing Physical Layer Security of Multiuser MIMO Uplink Transmission. IEEE Systems Journal, 2021, 15, 3336-3347.	4.6	27
21	A pre-whitening scheme in a MIMO-based spectrum-sharing environment. IEEE Communications Letters, 2008, 12, 831-833.	4.1	24
22	Can One Achieve Multiuser Diversity in Uplink Multi-Cell Networks?. IEEE Transactions on Communications, 2012, 60, 3535-3540.	7.8	24
23	Codebook-Based Opportunistic Interference Alignment. IEEE Transactions on Signal Processing, 2014, 62, 2922-2937.	5.3	24
24	Opportunistic Function Computation for Wireless Sensor Networks. IEEE Transactions on Wireless Communications, 2016, 15, 4045-4059.	9.2	24
25	Performance comparison of downlink user multiplexing schemes in IEEE 802.11ac: Multi-user MIMO vs. frame aggregation. , 2012, , .		23
26	Virtual Full-Duplex Cooperative NOMA: Relay Selection and Interference Cancellation. IEEE Transactions on Wireless Communications, 2019, 18, 5882-5893.	9.2	23
27	On the Link Scheduling for Cellular-Aided Device-to-Device Networks. IEEE Transactions on Vehicular Technology, 2016, 65, 9404-9409.	6.3	22
28	A Novel Link-to-System Mapping Technique Based on Machine Learning for 5G/IoT Wireless Networks. Sensors, 2019, 19, 1196.	3.8	22
29	A Compact Dual-Polarized (CP, LP) With Dual-Feed Microstrip Patch Array for Target Detection. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 517-521.	4.0	22
30	Uplink NOMA Random Access Systems With Space–Time Line Code. IEEE Transactions on Vehicular Technology, 2020, 69, 4522-4526.	6.3	20
31	Artificial Noise Injection and Its Power Loading Methods for Secure Space-Time Line Coded Systems. Entropy, 2019, 21, 515.	2.2	19
32	A Practical Antenna Selection Technique in Multiuser Massive MIMO Networks. IEICE Transactions on Communications, 2013, E96.B, 2901-2905.	0.7	19
33	Performance Comparison of Uplink WLANs with Single-User and Multi-User MIMO Schemes. , 2008, , .		17
34	Transmit Power Optimization for Two-Way Relay Channels With Physical-Layer Network Coding. IEEE Communications Letters, 2015, 19, 151-154.	4.1	17
35	Effect of Prediction Error of Machine Learning Schemes on Photovoltaic Power Trading Based on Energy Storage Systems. Energies, 2019, 12, 1249.	3.1	17
36	Distributed Interference Alignment for Multi-Antenna Cellular Networks With Dynamic Time Division Duplex. IEEE Communications Letters, 2018, 22, 792-795.	4.1	15

#	Article	IF	CITATIONS
37	Capacity analysis of simple and opportunistic feedback schemes in OFDMA Systems. , 2007, , .		14
38	Versatile Access Control for Massive IoT: Throughput, Latency, and Energy Efficiency. IEEE Transactions on Mobile Computing, 2019, , 1-1.	5 . 8	14
39	Resource-Hopping-Based Grant-Free Multiple Access for 6G-Enabled Massive IoT Networks. IEEE Internet of Things Journal, 2021, 8, 15349-15360.	8.7	14
40	Network Coordinated Opportunistic Beamforming in Downlink Cellular Networks. IEICE Transactions on Communications, 2012, E95.B, 1393-1396.	0.7	13
41	A distributed scheduling with interference-aware power control for ultra-dense networks. , 2015, , .		13
42	Distributed Transmit Power Optimization for Device-to-Device Communications Underlying Cellular Networks. IEEE Access, 2019, 7, 87617-87633.	4.2	13
43	Physical-Layer Security Improvement with Reconfigurable Intelligent Surfaces for 6G Wireless Communication Systems. Sensors, 2021, 21, 1439.	3.8	13
44	Resource-Optimized Recursive Access Class Barring for Bursty Traffic in Cellular IoT Networks. IEEE Internet of Things Journal, 2021, 8, 11640-11654.	8.7	13
45	Zero-forcing-based two-phase relaying with multiple mobile stations. , 2008, , .		12
46	A Throughput Balancing Problem between Uplink and Downlink in Multi-user MIMO-Based WLAN Systems. , 2009, , .		12
47	Power allocation policies with full and partial inter-system channel state information for cognitive radio networks. Wireless Networks, 2013, 19, 99-113.	3.0	12
48	Opportunistic downlink interference alignment. , 2014, , .		12
49	Dynamic Access Control With Resource Limitation for Group Paging-Based Cellular IoT Systems. IEEE Internet of Things Journal, 2018, 5, 5065-5075.	8.7	12
50	Space–time line coded regenerative twoâ€way relay systems with power control. Electronics Letters, 2019, 55, 694-696.	1.0	12
51	Decentralized Intercell Interference Coordination in Uplink Cellular Networks using Adaptive Sub-Band Exclusion. , 2009, , .		11
52	Performance Analysis of Grant-Free Multiple Access for Supporting Sporadic Traffic in Massive IoT Networks. IEEE Access, 2019, 7, 166648-166656.	4.2	11
53	A study on the green cellular network with femtocells. , 2011, , .		10
54	Performance Analysis of Uplink NOMA-IoT Networks with Space-Time Line Code., 2019,,.		10

#	Article	IF	CITATIONS
55	Performance Analysis of Uplink NOMA With Constellationâ€"Rotated STLC for IoT Networks. IEEE Open Journal of the Communications Society, 2022, 3, 705-717.	6.9	10
56	Opportunistic interference alignment for MIMO IMAC: Effect of user scaling over degrees-of-freedom, , 2012, , .		9
57	Energy efficiency of ultraâ€dense smallâ€cell downlink networks with adaptive cell breathing. IET Communications, 2018, 12, 367-372.	2.2	9
58	Performance Analysis of Reactive Symbol-Level Jamming Techniques. IEEE Transactions on Vehicular Technology, 2018, 67, 12432-12437.	6.3	9
59	Multichannel Uplink NOMA Random Access: Selection Diversity and Bistability. IEEE Communications Letters, 2019, 23, 1515-1519.	4.1	9
60	DeCoNet: Density Clustering-Based Base Station Control for Energy-Efficient Cellular IoT Networks. IEEE Access, 2020, 8, 120881-120891.	4.2	9
61	Degrees-of-Freedom Based on Interference Alignment with Imperfect Channel Knowledge. IEICE Transactions on Communications, 2011, E94-B, 3579-3582.	0.7	9
62	Performance Analysis of Orthogonal-Code Hopping Multiplexing Systems With Repetition, Convolutional, and Turbo Coding Schemes. IEEE Transactions on Vehicular Technology, 2008, 57, 932-944.	6.3	8
63	Capacity Analysis of an Opportunistic Scheduling System in a Spectrum Sharing Environment. , 2008, , .		8
64	Sum rate enhancement by maximizing SGINR in an opportunistic interference alignment scheme. , 2011, , .		8
65	Contrabass: Concurrent transmissions without coordination for ad hoc networks., 2011,,.		8
66	Opportunistic Interference Alignment for Random Access Networks. IEEE Transactions on Vehicular Technology, 2015, 64, 5947-5954.	6.3	8
67	Successive Interference Cancellation With Feedback for Random Access Networks. IEEE Communications Letters, 2017, 21, 825-828.	4.1	8
68	Performance Analysis of Diversity-Controlled Multi-User Superposition Transmission for 5G Wireless Networks. Sensors, 2018, 18, 536.	3.8	8
69	UAV-assisted cooperative downlink NOMA with virtual full-duplex operation. ICT Express, 2019, 5, 240-244.	4.8	8
70	Secrecy Rate Analysis of Opportunistic User Scheduling in Uplink Networks With Potential Eavesdroppers. IEEE Access, 2019, 7, 127078-127089.	4.2	8
71	Random Access Games With Cost of Waiting for Uplink NOMA Systems. IEEE Wireless Communications Letters, 2019, 8, 1361-1364.	5.0	8
72	Sub-band spreading technique for adaptive modulation in OFDM systems. Journal of Communications and Networks, 2008, 10, 71-78.	2.6	7

#	Article	lF	Citations
73	A Dynamic Paradigm for Spectrally Efficient Half-Duplex Multi-Antenna Relaying. IEEE Transactions on Wireless Communications, 2013, 12, 4680-4691.	9.2	7
74	On the Sparse Signal Recovery with Parallel Orthogonal Matching Pursuit. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2013, E96.A, 2728-2730.	0.3	7
75	Interference modeling and analysis in 3-dimensional directional UAV networks based on stochastic geometry. ICT Express, 2019, 5, 235-239.	4.8	7
76	Improving Energy Efficiency Fairness of Wireless Networks: A Deep Learning Approach. Energies, 2019, 12, 4300.	3.1	7
77	A Novel Non-Orthogonal Multiple Access with Space-Time Line Codes for Massive IoT Networks. , 2019, , .		7
78	Modeling and Online Adaptation of ALOHA for Low-Power Wide-Area Networks (LPWANs). IEEE Internet of Things Journal, 2021, 8, 15608-15619.	8.7	7
79	Online Backoff Control for NOMA-Enabled Random Access Procedure for Cellular Networks. IEEE Wireless Communications Letters, 2021, 10, 1158-1162.	5.0	7
80	On the Achievable Degrees-of-Freedom by Distributed Scheduling in (N,K)-User Interference Channels. IEEE Transactions on Communications, 2013, 61, 2568-2579.	7.8	6
81	Effects of Heterogenous Mobility on Rate Adaptation and User Scheduling in Cellular Networks With HARQ. IEEE Transactions on Vehicular Technology, 2013, 62, 2735-2748.	6.3	6
82	On the Multi-User Diversity with Fixed Power Transmission in Cognitive Radio Networks. IEEE Wireless Communications Letters, 2014, 3, 74-77.	5.0	6
83	On the Optimal Link Adaptation in Linear Relay Networks With Incremental Redundancy HARQ. IEEE Communications Letters, 2014, 18, 1411-1414.	4.1	6
84	Non-orthogonal random access with channel inversion for 5G networks. , 2017, , .		6
85	Adaptive Analog Function Computation via Fading Multiple-Access Channels. IEEE Communications Letters, 2018, 22, 213-216.	4.1	6
86	Recursive Access Class Barring for Machine Type Communications with PUSCH Resource Constraints. , 2019, , .		6
87	Interference Analysis of Directional UAV Networks: A Stochastic Geometry Approach., 2019,,.		6
88	UAV-Assisted Cooperative Downlink NOMA with Virtual Full-Duplex Operation., 2019,,.		6
89	Channel Measurement and Feasibility Test for Wireless Avionics Intra-Communications. Sensors, 2019, 19, 1294.	3.8	6
90	Multi-Stream Opportunistic Network Decoupling: Relay Selection and Interference Management. IEEE Transactions on Mobile Computing, 2019, 18, 2372-2385.	5.8	6

#	Article	IF	CITATIONS
91	A Cooperative Phase-Steering Technique with On-Off Power Control for Spectrum Sharing-Based Wireless Sensor Networks. Sensors, 2020, 20, 1942.	3.8	6
92	Hybrid AF/DF Cooperative Relaying Technique with Phase Steering for Industrial IoT Networks. Energies, 2021, 14, 937.	3.1	6
93	Modified Viterbi Scoring for HMM-based Speech Recognition. Intelligent Automation and Soft Computing, 0, , -11.	2.1	6
94	A study on the optimal degree-of-freedoms of cellular networks: Opportunistic interference mitigation. , 2010, , .		5
95	A message passing algorithm for compressed sensing in wireless random access networks. , 2013, , .		5
96	A novel feedback reduction technique for cellular downlink with CDF-based scheduling. , 2013, , .		5
97	Optimal Transmission Strategy without Capacity Loss at a Primary User in Cognitive Radio Networks over Inter-Symbol Interference Channels. IEEE Communications Letters, 2014, 18, 411-414.	4.1	5
98	On the secrecy capacity of multi-cell uplink networks with opportunistic scheduling. , $2016, , .$		5
99	On CDF-based scheduling with non-uniform user distribution in multi-cell networks. , 2017, , .		5
100	Pricingâ€based distributed spectrum access for cognitive radio networks with geolocation database. IET Communications, 2017, 11, 733-738.	2.2	5
101	Achievable Rate Analysis of Opportunistic Transmission in Bursty Interference Networks. IEEE Communications Letters, 2018, 22, 654-657.	4.1	5
102	Fixed power allocation with nulling for TDD-based cellular uplink. IEEE Communications Letters, 2008, 12, 253-255.	4.1	4
103	A feasibility study on opportunistic interference alignment: Limited feedback and sum-rate enhancement., 2012,,.		4
104	Opportunistic interference alignment for MIMO interfering broadcast channels. , 2014, , .		4
105	Opportunistic Network Decoupling with Virtual Full-Duplex Operation in Multi-Source Interfering Relay Networks. IEEE Transactions on Mobile Computing, 2017, 16, 2321-2333.	5.8	4
106	Optimal Multiuser Diversity in Multi-Cell MIMO Uplink Networks: User Scaling Law and Beamforming Design. Entropy, 2017, 19, 393.	2.2	4
107	Performance analysis of opportunistic CSMA schemes in cognitive radio networks. Wireless Networks, 2018, 24, 833-845.	3.0	4
108	Robust Channel Allocation with Heterogeneous Requirements for Wireless Mesh Backbone Networks. Sensors, 2018, 18, 2687.	3.8	4

#	Article	IF	CITATIONS
109	Adaptive successive transmission in virtual full-duplex cooperative NOMA., 2018,,.		4
110	A Pseudo-Random Beamforming Technique for Improving Physical-Layer Security of MIMO Cellular Networks. Entropy, 2019, 21, 1038.	2.2	4
111	Beamforming Techniques for Over-the-Air Computation in MIMO IoT Networks. Sensors, 2020, 20, 6464.	3.8	4
112	Performance Analysis of Cooperative Low-Power Wide-Area Network for Energy-Efficient B5G Systems. Electronics (Switzerland), 2020, 9, 680.	3.1	4
113	Secrecy Outage Analysis of Multiuser Downlink Wiretap Networks With Potential Eavesdroppers. IEEE Systems Journal, 2021, 15, 3093-3096.	4.6	4
114	User and Antenna Joint Selection in Multi-User Large-Scale MIMO Downlink Networks. IEICE Transactions on Communications, 2017, E100.B, 529-535.	0.7	4
115	Joint Optimization of Energy Efficiency and User Outage Using Multi-Agent Reinforcement Learning in Ultra-Dense Small Cell Networks. Electronics (Switzerland), 2022, 11, 599.	3.1	4
116	Statistical multiplexing-based hybrid FH-OFDMA system for OFDM-based UWB indoor radio access networks. IEEE Transactions on Microwave Theory and Techniques, 2006, 54, 1793-1801.	4.6	3
117	Performance Analysis of Orthogonal Code Hopping Multiplexing Systems. , 2006, , .		3
118	Adaptive Sub-Band Nulling for OFDM-Based Wireless Communication Systems. , 2007, , .		3
119	Effect of cooperative and selection relaying schemes on multiuser diversity in downlink cellular systems with relays. Journal of Communications and Networks, 2008, 10, 175-185.	2.6	3
120	Uplink capacity improvement through orthogonal code hopping in uplink-synchronized CDMA systems. IEEE Transactions on Wireless Communications, 2009, 8, 5404-5410.	9.2	3
121	A Cognitive p-Persistent CSMA Scheme for Spectrum Sharing Based Cognitive Radio Networks. , 2010, , .		3
122	On the Degrees of Freedom of the Large-Scale Interfering Two-Way Relay Network. IEEE Transactions on Vehicular Technology, 2016, 65, 9442-9450.	6.3	3
123	Spatial-modulated physical-layer network coding in two-way relay networks with convolutional codes. , 2017, , .		3
124	Multi-cell pseudo-random beamforming: Opportunistic feedback and beam selection. , 2017, , .		3
125	A Practical Physical-Layer Network Coding with Spatial Modulation in Two-Way Relay Networks. Computer Journal, 2018, 61, 264-272.	2.4	3
126	Machine Learning Based Link-to-System Mapping for System-Level Simulation of Cellular Networks. , 2018, , .		3

#	Article	IF	CITATIONS
127	Interference Coordination for Heterogeneous Users in Asynchronous Fog Radio Access Networks. IEEE Wireless Communications Letters, 2019, 8, 1064-1068.	5.0	3
128	Capacity Analysis of Multi-Pair Orbital Angular Momentum Interference Networks. , 2019, , .		3
129	Achievable Rate of Multi-User Mode-Division Multiplexing Using Orbital Angular Momentum. , 2019, , .		3
130	Opportunistic Interference Alignment for Spectrum Sharing between Radar and Communication Systems. Sensors, 2020, 20, 4868.	3.8	3
131	A cooperative phase-steering technique in spectrum sharing-based military mobile ad hoc networks. ICT Express, 2020, 6, 83-86.	4.8	3
132	An Enhanced Random Access With Inter-Frame Successive Interference Cancellation for Stationary Cellular IoT Networks. IEEE Wireless Communications Letters, 2020, 9, 606-610.	5.0	3
133	Optimal Frequency Reuse and Power Control in Multi-UAV Wireless Networks: Hierarchical Multi-Agent Reinforcement Learning Perspective. IEEE Access, 2022, 10, 39555-39565.	4.2	3
134	A new turbo-coded OFDM system using orthogonal code multiplexing. , 0, , .		2
135	Performance Comparison of Downlink Capacity Improvement Schemes: Orthogonal Code-Hopping Multiplexing Versus Multiple Scrambling Codes. IEEE Transactions on Vehicular Technology, 2009, 58, 670-681.	6.3	2
136	Ontology based information distribution in the pervasive display environment. , 2010, , .		2
137	Power Efficient Transmission Scheme with Adaptive Cyclic Prefix for an Uplink of OFDMA Systems. IEICE Transactions on Communications, 2011, E94-B, 798-801.	0.7	2
138	Joint rate adaptation and user scheduling in HARQ-based multi-user systems with heterogeneous mobility. , 2012, , .		2
139	On the joint power and rate optimization in multihop relay networks with HARQ. , 2013, , .		2
140	On the CDF-based scheduling for multi-cell uplink networks. , 2014, , .		2
141	Improving Energy Efficiency of Cooperative Femtocell Networks via Base Station Switching Off. Mobile Information Systems, 2016, 2016, 1-6.	0.6	2
142	Joint Link Adaptation and User Scheduling With HARQ in Multicell Environments. IEEE Transactions on Vehicular Technology, 2016, 65, 1292-1302.	6.3	2
143	Optimal power allocation and allowable interference shaping in cognitive radio networks. Computers and Electrical Engineering, 2018, 71, 265-272.	4.8	2
144	Adaptive Proportional Fairness Scheduling for SWIPT-Enabled Multicell Downlink Networks. , 2019, , .		2

#	Article	IF	CITATIONS
145	An Enhanced Random Access With Distributed Pilot Orthogonalization for Cellular IoT Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 1152-1156.	6.3	2
146	Performance analysis of physical-layer network coding with QPSK modulation in wireless IoT networks. ICT Express, $2021, \ldots$	4.8	2
147	Performance Enhancement of a TH-PPM UWB System Using a Near-Interference Erasure Scheme. , 2006, ,		1
148	WLC03-2: Capacity Analysis of Downlink CDMA Systems with Quasi-Orthogonal Sequences. IEEE Global Telecommunications Conference (GLOBECOM), 2006, , .	0.0	1
149	On the link adaptation and user scheduling with HARQ in the presence of inter-cell interference. , 2013, , .		1
150	On the joint design of beamforming and user scheduling in multi-cell MIMO uplink networks. , 2014, , .		1
151	Opportunistic network decoupling in multi-source interfering relay networks. , 2014, , .		1
152	Opportunistic in-network computation for wireless sensor networks., 2015,,.		1
153	Achievable degrees-of-freedom of (n, K)-user interference channel with distributed beamforming. , 2015, , .		1
154	A Distributed Interference Management for Crowded WLANs: Opportunistic Interference Alignment. , 2015, , .		1
155	On the multiuser diversity in SIMO interfering multiple access channels: Distributed user scheduling framework. Journal of Communications and Networks, 2015, 17, 267-274.	2.6	1
156	Signal detection with parallel orthogonal matching pursuit in multi-user spatial modulation systems, 2016, , .		1
157	On the Relaying Protocols Without Causing Capacity Loss at a Primary Node in Cognitive Radio Networks. IEEE Transactions on Vehicular Technology, 2016, 65, 5972-5983.	6.3	1
158	Trade-Off between spectral efficiency and energy efficiency in multi-cell uplink networks. , 2017, , .		1
159	Full-duplex generalized spatial modulation: A compressed sensing-based signal detection (invited) Tj ETQq1 1 0	.784314 rg	gBT ₁ /Overlock
160	Switched 4-to-1 Transimpedance Combining Amplifier for Receiver Front-End Circuit of Static Unitary Detector-Based LADAR System. Applied Sciences (Switzerland), 2017, 7, 689.	2.5	1
161	4-to-1 Transimpedance combining amplifier-based static unitary detector for high-resolution of LADAR sensor. Analog Integrated Circuits and Signal Processing, 2018, 94, 481-495.	1.4	1
162	Resource usage of LTE networks for machine-to-Machine group communications: Modeling and analysis. Computers and Electrical Engineering, 2018, 71, 321-330.	4.8	1

#	Article	IF	CITATIONS
163	Downlink Interference Alignment with Multi-User and Multi-Beam Diversity for Fog RANs. , 2019, , .		1
164	Performance analysis of satellite and terrestrial spectrumâ€shared networks with directional antenna. ETRI Journal, 2020, 42, 712-720.	2.0	1
165	Stability Region of Hybrid Uplink NOMA: Game Theoretic Perspective. IEEE Transactions on Vehicular Technology, 2021, 70, 3955-3960.	6.3	1
166	Interference alignment with receive antenna partitioning for SWIPT-enabled fog RANs. ICT Express, 2022, 8, 485-489.	4.8	1
167	Sliding Window-Based Transmit Antenna Selection Technique for Large-Scale MU-MIMO Networks. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014, E97.A, 1640-1641.	0.3	1
168	A Threshold-Based Distributed User Scheduling with Transmit Power Control for Uplink Multi-Cell Networks. The Journal of the Korean Institute of Information and Communication Engineering, 2014, 18, 2607-2612.	0.1	1
169	Buffer-Aided Cooperative Phase Steering Technique for Delay-Tolerant Networks. , 2021, , .		1
170	Optimal Design of Full-Duplex Orbital Angular Momentum Mode-Division Multiplexing Systems. , 2022, , .		1
171	Orthogonal Time Hopping Multiple Access for UWB Impulse Radio Communications. , 0, , .		O
172	WLC13-5: Downlink Capacity Improvement Through Orthogonal Code Hopping Multiplexing and Multiple Scrambling Codes in CDMA Systems. IEEE Global Telecommunications Conference (GLOBECOM), 2006, , .	0.0	0
173	Capacity Analysis of a TH-PPM UWB System using a Near-Interference Erasure Scheme in Multi-User Environments. , 2007, , .		O
174	Distance-Based Code-Collision Control Scheme Using Erasure Decoding in Orthogonal Code Hopping Multiplexing. International Conference on Advanced Communication Technology, 2007, , .	0.0	0
175	Performance analysis of four different downlink data relaying schemes in cellular systems. , 2007, , .		O
176	Performance analysis of an opportunistic CSMA scheme in cognitive radio networks. , 2011, , .		0
177	Opportunistic Noisy Network Coding for Fading Parallel Relay Networks. , 2011, , .		O
178	On the energy efficiency of wireless random access networks with multi-packet reception. , 2013, , .		0
179	Achievable degrees-of-freedom by distributed scheduling in an (n, K)-user interference channel. , 2013, ,		0
180	The design of optimal receiver for opportunistic interference alignment., 2014,,.		0

#	Article	IF	CITATIONS
181	Buffer-aided two-way relaying with lattice codes. , 2014, , .		O
182	A Low Complexity Multi-Packet Reception Technique for Wireless Ad Hoc Networks. International Journal of Control and Automation, 2014, 7, 13-24.	0.3	0
183	Opportunistic Noisy Network Coding for Fading Relay Networks Without CSIT. IEEE Transactions on Wireless Communications, 2015, 14, 6097-6110.	9.2	0
184	Pseudo-Random Beamforming with Beam Selection for Improving Physical-Layer Security., 2018,,.		0
185	Diversity-Controlled Multi-User Superposition Transmission for Uplink Cellular Networks. , 2018, , .		0
186	Distributed Opportunistic Scheduling With Interference Mitigation Antenna Selection for Ultra-Dense D2D Networks. IEEE Wireless Communications Letters, 2021, 10, 1113-1117.	5.0	0
187	Folded microstrip antenna with isotropic radiation pattern. Microwave and Optical Technology Letters, 2021, 63, 2859-2865.	1.4	0
188	Performance Comparison between Interference Minimization and Signal Maximization in Multi-Cell Random Access Networks. The Journal of the Korean Institute of Information and Communication Engineering, 2015, 19, 2014-2021.	0.1	0
189	Joint User Scheduling and Power Control Considering Both Signal and Interference for Multi-Cell Networks. The Journal of the Korean Institute of Information and Communication Engineering, 2016, 20, 477-483.	0.1	0
190	Effect of Multiple Antennas at a Relay Node on the Performance of Physical-Layer Network Coding in Two-Way Relay Channel. The Journal of the Korean Institute of Information and Communication Engineering, 2016, 20, 1438-1443.	0.1	0
191	A 2-Stage Low Noise Amplifier in 90 nm CMOS for 2.4 GHz Applications. Advanced Science Letters, 2016, 22, 3228-3231.	0.2	0
192	2048-Point Fast Fourier Transform Processing Based on Twiddle Factor Reduction and Dynamic Data Scaling. Advanced Science Letters, 2016, 22, 3662-3666.	0.2	0
193	Low-power CMOS Front-end ROIC using Inverter-feedback RGC TIA for 3-D Flash LADAR Sensor. Journal of Semiconductor Technology and Science, 2018, 18, 57-64.	0.4	0
194	On-Off Power Control with Low Complexity in D2D Underlaid Cellular Networks. IEICE Transactions on Communications, 2018, E101.B, 1961-1966.	0.7	0
195	Onâ€chip triplexer using seriesâ€first structure for connecting radio frequency modules in a 65 nm <scp>CMOS</scp> . Microwave and Optical Technology Letters, 2022, 64, 721-726.	1.4	0
196	Space–time line coded spatial modulation. Electronics Letters, 0, , .	1.0	0