Shiuan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4541765/publications.pdf

Version: 2024-02-01

41344 7,024 163 citations papers

49 73 h-index g-index 168 168 168 8220 docs citations times ranked citing authors all docs

79698

#	Article	IF	CITATIONS
1	TXNIP Links Anticipatory Unfolded Protein Response to Estrogen Reprogramming Glucose Metabolism in Breast Cancer Cells. Endocrinology, 2022, 163 , .	2.8	8
2	Abstract OT2-19-01: Presurgical treatment with ribociclib and letrozole in patients with locally advanced breast cancer: The NEOLETRIB study. Cancer Research, 2022, 82, OT2-19-01-OT2-19-01.	0.9	0
3	Single-Cell Transcriptomics Identifies Heterogeneity of Mouse Mammary Gland Fibroblasts With Distinct Functions, Estrogen Responses, Differentiation Processes, and Crosstalks With Epithelium. Frontiers in Cell and Developmental Biology, 2022, 10, 850568.	3.7	9
4	Functional characterization of androgen receptor in two patient-derived xenograft models of triple negative breast cancer. Journal of Steroid Biochemistry and Molecular Biology, 2021, 206, 105791.	2.5	3
5	A Gene Expression Biomarker Identifies Chemical Modulators of Estrogen Receptor α in an MCF-7 Microarray Compendium. Chemical Research in Toxicology, 2021, 34, 313-329.	3 . 3	8
6	White button mushroom (Agaricus bisporus) disrupts androgen receptor signaling in human prostate cancer cells and patient-derived xenograft. Journal of Nutritional Biochemistry, 2021, 89, 108580.	4.2	14
7	Evaluation of a Keratin 1 Targeting Peptide-Doxorubicin Conjugate in a Mouse Model of Triple-Negative Breast Cancer. Pharmaceutics, 2021, 13, 661.	4.5	14
8	Mammary cell gene expression atlas links epithelial cell remodeling events to breast carcinogenesis. Communications Biology, 2021, 4, 660.	4.4	29
9	Exploring the Biological Activity and Mechanism of Xenoestrogens and Phytoestrogens in Cancers: Emerging Methods and Concepts. International Journal of Molecular Sciences, 2021, 22, 8798.	4.1	19
10	White button mushroom interrupts tissue AR-mediated TMPRSS2 expression and attenuates pro-inflammatory cytokines in C57BL/6 mice. Npj Science of Food, 2021, 5, 20.	5 . 5	4
11	Effects of PI3K inhibition in Al-resistant breast cancer cell lines: autophagy, apoptosis, and cell cycle progression. Breast Cancer Research and Treatment, 2021, 190, 227-240.	2.5	2
12	Methylation biomarkers of polybrominated diphenyl ethers (PBDEs) and association with breast cancer risk at the time of menopause. Environment International, 2021, 156, 106772.	10.0	5
13	11-Oxygenated Estrogens Are a Novel Class of Human Estrogens but Do not Contribute to the Circulating Estrogen Pool. Endocrinology, 2021, 162, .	2.8	18
14	Mitochondrial stress adaptation promotes resistance to aromatase inhibitor in human breast cancer cells via ROS/calcium up-regulated amphiregulin–estrogen receptor loop signaling. Cancer Letters, 2021, 523, 82-99.	7.2	14
15	Influence of Estrogen Treatment on ESR1+ and ESR1â [*] Cells in ER+ Breast Cancer: Insights from Single-Cell Analysis of Patient-Derived Xenograft Models. Cancers, 2021, 13, 6375.	3.7	7
16	Mushroom consumption and incident risk of prostate cancer in Japan: A pooled analysis of the Miyagi Cohort Study and the Ohsaki Cohort Study. International Journal of Cancer, 2020, 146, 2712-2720.	5.1	25
17	Changes in serum estrogenic activity during neoadjuvant therapy with letrozole and exemestane. Journal of Steroid Biochemistry and Molecular Biology, 2020, 200, 105641.	2.5	7
18	Role of the mitochondrial stress response in human cancer progression. Experimental Biology and Medicine, 2020, 245, 861-878.	2.4	25

#	Article	IF	CITATIONS
19	Environmental Carcinogenesis at the Single-Cell Level. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1880-1886.	2.5	1
20	Amphiregulin retains $\text{ER}\hat{l}\pm$ expression in acquired aromatase inhibitor resistant breast cancer cells. Endocrine-Related Cancer, 2020, 27, 671-683.	3.1	5
21	Single-cell RNA-sequencing analysis of estrogen- and endocrine-disrupting chemical-induced reorganization of mouse mammary gland. Communications Biology, 2019, 2, 406.	4.4	36
22	Targeting Triple Negative Breast Cancer Cells with Novel Cytotoxic Peptide–Doxorubicin Conjugates. Bioconjugate Chemistry, 2019, 30, 3098-3106.	3.6	28
23	Environmental exposures during windows of susceptibility for breast cancer: a framework for prevention research. Breast Cancer Research, 2019, 21, 96.	5.0	143
24	Molecular Mechanisms of Polybrominated Diphenyl Ethers (BDE-47, BDE-100, and BDE-153) in Human Breast Cancer Cells and Patient-Derived Xenografts. Toxicological Sciences, 2019, 169, 380-398.	3.1	30
25	Synergistic anti-cancer activity of CDK4/6 inhibitor palbociclib and dual mTOR kinase inhibitor MLN0128 in pRb-expressing ER-negative breast cancer. Breast Cancer Research and Treatment, 2019, 174, 615-625.	2.5	45
26	Use of dual mTOR inhibitor MLN0128 against everolimus-resistant breast cancer. Breast Cancer Research and Treatment, 2018, 170, 499-506.	2.5	14
27	Identification of Estrogen-Related Receptor \hat{l}_{\pm} Agonists in the Tox21 Compound Library. Endocrinology, 2018, 159, 744-753.	2.8	40
28	Dual mTOR Kinase Inhibitor MLN0128 Sensitizes HR+/HER2+ Breast Cancer Patient-Derived Xenografts to Trastuzumab or Fulvestrant. Clinical Cancer Research, 2018, 24, 395-406.	7.0	18
29	ERα-mediated cell cycle progression is an important requisite for CDK4/6 inhibitor response in HR+ breast cancer. Oncotarget, 2018, 9, 27736-27751.	1.8	11
30	Characterization of patient-derived tumor xenografts (PDXs) as models for estrogen receptor positive (ER+HER2â^ and ER+HER2+) breast cancers. Journal of Steroid Biochemistry and Molecular Biology, 2017, 170, 65-74.	2.5	26
31	SGK3 sustains $ER\hat{l}\pm$ signaling and drives acquired aromatase inhibitor resistance through maintaining endoplasmic reticulum homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1500-E1508.	7.1	32
32	Treatment for the endocrine resistant breast cancer: Current options and future perspectives. Journal of Steroid Biochemistry and Molecular Biology, 2017, 172, 166-175.	2.5	41
33	Structural and functional characterization of aromatase, estrogen receptor, and their genes in endocrine-responsive and $\hat{a} \in \hat{a} \in \hat{b}$ resistant breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2016, 161, 73-83.	2.5	67
34	A Systematic Review of Randomized Controlled Trials on Oral Chinese Herbal Medicine for Prostate Cancer. PLoS ONE, 2016, 11, e0160253.	2.5	16
35	A phase I trial of mushroom powder in patients with biochemically recurrent prostate cancer: Roles of cytokines and myeloidâ€derived suppressor cells for ⟨i⟩Agaricus bisporus⟨/i⟩–induced prostateâ€specific antigen responses. Cancer, 2015, 121, 2942-2950.	4.1	44
36	From bench to bedside: What do we know about hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancer?. Journal of Steroid Biochemistry and Molecular Biology, 2015, 153, 45-53.	2.5	47

#	Article	IF	Citations
37	Down-regulation of programmed cell death 4 (PDCD4) is associated with aromatase inhibitor resistance and a poor prognosis in estrogen receptor-positive breast cancer. Breast Cancer Research and Treatment, 2015, 152, 29-39.	2.5	52
38	Cell-Based High-Throughput Screening for Aromatase Inhibitors in the Tox21 10K Library. Toxicological Sciences, 2015, 147, 446-457.	3.1	61
39	Cross-talk between ER and HER2 regulates c-MYC-mediated glutamine metabolism in aromatase inhibitor resistant breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2015, 149, 118-127.	2.5	71
40	AroER tri-screenâ,,¢ is a novel functional assay to estimate both estrogenic and estrogen precursor activity of chemicals or biological specimens. Breast Cancer Research and Treatment, 2015, 151, 335-345.	2.5	8
41	Targeting breast cancer stem cells in triple-negative breast cancer using a combination of LBH589 and salinomycin. Breast Cancer Research and Treatment, 2015, 151, 281-294.	2.5	56
42	Aromatase deficiency in a Chinese adult man caused by novel compound heterozygous CYP19A1 mutations: Effects of estrogen replacement therapy on the bone, lipid, liver and glucose metabolism. Molecular and Cellular Endocrinology, 2015, 399, 32-42.	3.2	46
43	<i>SERPINA1</i> is a direct estrogen receptor target gene and a predictor of survival in breast cancer patients. Oncotarget, 2015, 6, 25815-25827.	1.8	58
44	Coordinated Regulation of Serum- and Glucocorticoid-inducible Kinase 3 by a C-terminal Hydrophobic Motif and Hsp90-Cdc37 Chaperone Complex. Journal of Biological Chemistry, 2014, 289, 4815-4826.	3.4	12
45	Assessing the effect of food mycotoxins on aromatase by using a cell-based system. Toxicology in Vitro, 2014, 28, 640-646.	2.4	13
46	SGK3 Is an Androgen-Inducible Kinase Promoting Prostate Cancer Cell Proliferation Through Activation of p70 S6 Kinase and Up-Regulation of Cyclin D1. Molecular Endocrinology, 2014, 28, 935-948.	3.7	30
47	AroER Tri-Screen Is a Biologically Relevant Assay for Endocrine Disrupting Chemicals Modulating the Activity of Aromatase and/or the Estrogen Receptor. Toxicological Sciences, 2014, 139, 198-209.	3.1	27
48	Inhibition of the proliferation of acquired aromatase inhibitor-resistant breast cancer cells by histone deacetylase inhibitor LBH589 (panobinostat). Breast Cancer Research and Treatment, 2013, 137, 93-107.	2.5	43
49	Androgen (dihydrotestosterone)–mediated regulation of food intake and obesity in female mice. Journal of Steroid Biochemistry and Molecular Biology, 2013, 138, 100-106.	2.5	28
50	Effects of steroidal aromatase inhibitors on sensitive and resistant breast cancer cells: Aromatase inhibition and autophagy. Journal of Steroid Biochemistry and Molecular Biology, 2013, 135, 51-59.	2.5	32
51	BD-Func: a streamlined algorithm for predicting activation and inhibition of pathways. PeerJ, 2013, 1, e159.	2.0	10
52	CCL2 Mediates Cross-talk between Cancer Cells and Stromal Fibroblasts That Regulates Breast Cancer Stem Cells. Cancer Research, 2012, 72, 2768-2779.	0.9	342
53	The development, application and limitations of breast cancer cell lines to study tamoxifen and aromatase inhibitor resistance. Journal of Steroid Biochemistry and Molecular Biology, 2012, 131, 83-92.	2.5	31
54	The citrus flavonone hesperetin inhibits growth of aromatase-expressing MCF-7 tumor in ovariectomized athymic mice. Journal of Nutritional Biochemistry, 2012, 23, 1230-1237.	4.2	56

#	Article	IF	CITATIONS
55	AKT-aro and HER2-aro, models for de novo resistance to aromatase inhibitors; molecular characterization and inhibitor response studies. Breast Cancer Research and Treatment, 2012, 134, 671-681.	2.5	19
56	An "Omics―Approach to Determine the Mechanisms of Acquired Aromatase Inhibitor Resistance. OMICS A Journal of Integrative Biology, 2011, 15, 347-352.	2.0	38
57	Whole Blueberry Powder Modulates the Growth and Metastasis of MDA-MB-231 Triple Negative Breast Tumors in Nude Mice. Journal of Nutrition, 2011, 141, 1805-1812.	2.9	52
58	Aromatase, estrone sulfatase, and 17β-hydroxysteroid dehydrogenase: Structure–function studies and inhibitor development. Molecular and Cellular Endocrinology, 2011, 340, 120-126.	3.2	30
59	Growth factor signaling enhances aromatase activity of breast cancer cells via post-transcriptional mechanisms. Journal of Steroid Biochemistry and Molecular Biology, 2011, 123, 101-108.	2.5	34
60	In vitro and in vivo effects of a cyclooxygenase-2 inhibitor nimesulide analog JCC76 in aromatase inhibitors-insensitive breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2011, 126, 10-18.	2.5	14
61	Binding features of steroidal and nonsteroidal inhibitors. Steroids, 2011, 76, 802-806.	1.8	41
62	Protective Effects of White Button Mushroom (Agaricus bisporus) against Hepatic Steatosis in Ovariectomized Mice as a Model of Postmenopausal Women. PLoS ONE, 2011, 6, e26654.	2.5	32
63	PNRC accumulates in the nucleolus by interaction with B23/nucleophosmin via its nucleolar localization sequence. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 109-119.	4.1	14
64	Characterization of three different single chain antibodies recognizing non-reducing terminal mannose residues expressed in Escherichia coli by an inducible T7 expression system. Journal of Biochemistry, 2011, 150, 439-450.	1.7	4
65	SGK3 Is an Estrogen-Inducible Kinase Promoting Estrogen-Mediated Survival of Breast Cancer Cells. Molecular Endocrinology, 2011, 25, 72-82.	3.7	60
66	Blueberry phytochemicals inhibit growth and metastatic potential of MDAâ€MBâ€231 breast cancer cells through modulation of the Phosphatidylinositol 3â€Kinase pathway. FASEB Journal, 2011, 25, 225.2.	0.5	2
67	The role of microRNA-128a in regulating TGFbeta signaling in letrozole-resistant breast cancer cells. Breast Cancer Research and Treatment, 2010, 124, 89-99.	2.5	97
68	The HDAC inhibitor LBH589 (panobinostat) is an inhibitory modulator of aromatase gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11032-11037.	7.1	50
69	Pomegranate Ellagitannin–Derived Compounds Exhibit Antiproliferative and Antiaromatase Activity in Breast Cancer Cells <i>In vitro</i> . Cancer Prevention Research, 2010, 3, 108-113.	1.5	173
70	Regulation of aromatase induction by nuclear receptor coregulator PELP1. Journal of Steroid Biochemistry and Molecular Biology, 2010, 118, 211-218.	2.5	19
71	Molecular characterization of aromatase inhibitor-resistant, tamoxifen-resistant and LTEDaro cell lines. Journal of Steroid Biochemistry and Molecular Biology, 2010, 118, 277-282.	2.5	37
72	Sequence–function correlation of aromatase and its interaction with reductase. Journal of Steroid Biochemistry and Molecular Biology, 2010, 118, 203-206.	2.5	29

#	Article	IF	Citations
73	COX-2 inhibitor nimesulide analogs are aromatase suppressors in breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2010, 122, 232-238.	2.5	7
74	Conjugated linoleic acid reduces body weight gain in ovariectomized female C57BL/6J mice. Nutrition Research, 2010, 30, 714-721.	2.9	29
75	Phytochemicals for breast cancer prevention by targeting aromatase. Frontiers in Bioscience - Landmark, 2009, Volume, 3846.	3.0	27
76	Epitope Characterization of an Aromatase Monoclonal Antibody Suitable for the Assessment of Intratumoral Aromatase Activity. PLoS ONE, 2009, 4, e8050.	2.5	26
77	Heat Shock Protein 90 Inhibitors: New Mode of Therapy to Overcome Endocrine Resistance. Cancer Research, 2009, 69, 8670-8677.	0.9	31
78	Dietary administration of the licorice flavonoid isoliquiritigenin deters the growth of MCFâ€7 cells overexpressing aromatase. International Journal of Cancer, 2009, 124, 1028-1036.	5.1	56
79	Characterization of the weak estrogen receptor $\hat{l}\pm$ agonistic activity of exemestane. Breast Cancer Research and Treatment, 2009, 116 , $461\text{-}470$.	2.5	26
80	Molecular Characterization of Aromatase. Annals of the New York Academy of Sciences, 2009, 1155, 112-120.	3.8	50
81	Eugenia jambolana Lam. Berry Extract Inhibits Growth and Induces Apoptosis of Human Breast Cancer but Not Non-Tumorigenic Breast Cells. Journal of Agricultural and Food Chemistry, 2009, 57, 826-831.	5.2	119
82	Molecular basis for the interaction of four different classes of substrates and inhibitors with human aromatase. Biochemical Pharmacology, 2008, 75, 1161-1169.	4.4	43
83	MCF-7aro/ERE, a novel cell line for rapid screening of aromatase inhibitors, ERα ligands and ERRα ligands. Biochemical Pharmacology, 2008, 76, 208-215.	4.4	8
84	White Button Mushroom (<i>Agaricus Bisporus</i>) Exhibits Antiproliferative and Proapoptotic Properties and Inhibits Prostate Tumor Growth in Athymic Mice. Nutrition and Cancer, 2008, 60, 744-756.	2.0	68
85	Identification and characterization of PNRC splicing variants. Gene, 2008, 423, 116-124.	2.2	7
86	Molecular mechanisms of aromatase inhibition by new A, D-ring modified steroids. Biological Chemistry, 2008, 389, 1183-1191.	2.5	16
87	The red clover (<i>Trifolium pratense</i>) isoflavone biochanin A inhibits aromatase activity and expression. British Journal of Nutrition, 2008, 99, 303-310.	2.3	75
88	A New Therapeutic Strategy against Hormone-Dependent Breast Cancer: The Preclinical Development of a Dual Aromatase and Sulfatase Inhibitor. Clinical Cancer Research, 2008, 14, 6469-6477.	7.0	37
89	Nuclear Receptor Coactivator PNRC2 Regulates Energy Expenditure and Adiposity. Journal of Biological Chemistry, 2008, 283, 541-553.	3.4	13
90	CCAAT/Enhancer Binding Protein $\hat{\Gamma}$ Up-regulates Aromatase Promoters I.3/II in Breast Cancer Epithelial Cells. Cancer Research, 2008, 68, 4455-4464.	0.9	15

#	Article	IF	CITATIONS
91	Genome-Wide Analysis of Aromatase Inhibitor-Resistant, Tamoxifen-Resistant, and Long-Term Estrogen-Deprived Cells Reveals a Role for Estrogen Receptor. Cancer Research, 2008, 68, 4910-4918.	0.9	90
92	Modulation of in Situ Estrogen Synthesis by Proline-, Glutamic Acid-, and Leucine-Rich Protein-1: Potential Estrogen Receptor Autocrine Signaling Loop in Breast Cancer Cells. Molecular Endocrinology, 2008, 22, 649-664.	3.7	30
93	The Role of Amphiregulin in Exemestane-Resistant Breast Cancer Cells: Evidence of an Autocrine Loop. Cancer Research, 2008, 68, 2259-2265.	0.9	51
94	Improvement of sensitivity to tamoxifen in estrogen receptor-positive and Herceptin-resistant breast cancer cells. Journal of Molecular Endocrinology, 2008, 41, 367-377.	2.5	19
95	Molecular Basis for the Aromatization Reaction and Exemestane-Mediated Irreversible Inhibition of Human Aromatase. Molecular Endocrinology, 2007, 21, 401-414.	3.7	110
96	New experimental models for aromatase inhibitor resistance. Journal of Steroid Biochemistry and Molecular Biology, 2007, 106, 8-15.	2.5	31
97	PNRC is a unique nuclear receptor coactivator that stimulates RNA polymerase III-dependent transcription. Journal of Molecular Signaling, 2007, 2, 5.	0.5	12
98	Anti-Aromatase Activity of Phytochemicals in White Button Mushrooms (Agaricus bisporus). Cancer Research, 2006, 66, 12026-12034.	0.9	126
99	What do we know about the mechanisms of aromatase inhibitor resistance?. Journal of Steroid Biochemistry and Molecular Biology, 2006, 102, 232-240.	2.5	65
100	Molecular cloning and functional study of rat estrogen receptor-related receptor \hat{l}^3 in rat prostatic cells. Prostate, 2006, 66, 1600-1619.	2.3	14
101	Aromatase Inhibitors: Structural Features and Biochemical Characterization. Annals of the New York Academy of Sciences, 2006, 1089, 237-251.	3.8	60
102	The molecular basis of the interaction between the proline-rich SH3-binding motif of PNRC and estrogen receptor alpha. Nucleic Acids Research, 2006, 34, 5974-5986.	14.5	29
103	Grape Seed Extract Is an Aromatase Inhibitor and a Suppressor of Aromatase Expression. Cancer Research, 2006, 66, 5960-5967.	0.9	74
104	The Red Wine Polyphenol Resveratrol Displays Bilevel Inhibition on Aromatase in Breast Cancer Cells. Toxicological Sciences, 2006, 92, 71-77.	3.1	112
105	Aromatase Destabilizer: Novel Action of Exemestane, a Food and Drug Administration–Approved Aromatase Inhibitor. Cancer Research, 2006, 66, 10281-10286.	0.9	59
106	Letrozole-, Anastrozole-, and Tamoxifen-Responsive Genes in MCF-7aro Cells: A Microarray Approach. Molecular Cancer Research, 2005, 3, 203-218.	3.4	75
107	Positive and negative transcriptional regulation of aromatase expression in human breast cancer tissue. Journal of Steroid Biochemistry and Molecular Biology, 2005, 95, 17-23.	2.5	38
108	Growth inhibition of estrogen receptor-positive and aromatase-positive human breast cancer cells in monolayer and spheroid cultures by letrozole, anastrozole, and tamoxifen. Journal of Steroid Biochemistry and Molecular Biology, 2005, 97, 360-368.	2.5	16

#	Article	IF	Citations
109	The plant polyphenol butein inhibits testosterone-induced proliferation in breast cancer cells expressing aromatase. Life Sciences, 2005, 77, 39-51.	4.3	91
110	Transcriptional regulation of the mouse PNRC2 promoter by the nuclear factor Y (NFY) and E2F1. Gene, 2005, 361, 89-100.	2.2	14
111	Expression Study of Estrogen Receptor-related Receptors and Steroid Hormone Receptors in Human Prostatic Cells., 2005,, 501-507.		0
112	Biochemical and Biological Characterization of a Novel Anti-aromatase Coumarin Derivative. Journal of Biological Chemistry, 2004, 279, 48071-48078.	3.4	65
113	Quinone Reductase–Mediated Nitro-Reduction: Clinical Applications. Methods in Enzymology, 2004, 382, 194-221.	1.0	21
114	A novel crosstalk mechanism between nuclear receptor-mediated and growth factor/Ras-mediated pathways through PNRC–Grb2 interaction. Oncogene, 2004, 23, 5394-5404.	5.9	25
115	Structure–function studies of aromatase and its inhibitors: a progress report. Journal of Steroid Biochemistry and Molecular Biology, 2003, 86, 231-237.	2.5	49
116	Induction of aromatase (CYP19) expression in breast cancer cells through a nongenomic action of estrogen receptor alpha. Cancer Research, 2003, 63, 3546-55.	0.9	77
117	Flavone and isoflavone phytoestrogens are agonists of estrogen-related receptors. Molecular Cancer Research, 2003, 1, 981-91.	3.4	122
118	Transcriptional regulation of aromatase expression in human breast tissue. Journal of Steroid Biochemistry and Molecular Biology, 2002, 83, 93-99.	2.5	58
119	Modulation of aromatase activity and expression by environmental chemicals. Frontiers in Bioscience - Landmark, 2002, 7, d1712-1719.	3.0	5
120	Expression and purification of a recombinant form of human aromatase from Escherichia coli. Biochemical Pharmacology, 2002, 64, 1317-1324.	4.4	20
121	Regulation of aromatase promoter activity in human breast tissue by nuclear receptors. Oncogene, 2002, 21, 2854-2863.	5.9	35
122	Prevention and Treatment of Breast Cancer by Suppressing Aromatase Activity and Expression. Annals of the New York Academy of Sciences, 2002, 963, 229-238.	3.8	21
123	Modulation of aromatase expression in human breast tissue. Journal of Steroid Biochemistry and Molecular Biology, 2001, 79, 35-40.	2.5	42
124	$17\hat{l}_{\pm}$ -Methyl testosterone is a competitive inhibitor of aromatase activity in Jar choriocarcinoma cells and macrophage-like THP-1 cells in culture. Journal of Steroid Biochemistry and Molecular Biology, 2001, 79, 239-246.	2.5	46
125	White Button Mushroom Phytochemicals Inhibit Aromatase Activity and Breast Cancer Cell Proliferation. Journal of Nutrition, 2001, 131, 3288-3293.	2.9	114
126	Evaluation of the mechanism of aromatase cytochrome P450. FEBS Journal, 2001, 268, 243-251.	0.2	65

#	Article	IF	CITATIONS
127	Different Catalytic Properties and Inhibitor Responses of the Goldfish Brain and Ovary Aromatase Isozymes. General and Comparative Endocrinology, 2001, 123, 180-191.	1.8	59
128	Suppression of aromatase (estrogen synthetase) by red wine phytochemicals. Breast Cancer Research and Treatment, 2001, 67, 133-146.	2.5	50
129	PNRC2 is a 16 kDa coactivator that interacts with nuclear receptors through an SH3-binding motif. Nucleic Acids Research, 2001, 29, 3939-3948.	14.5	56
130	Molecular Basis for the Constitutive Activity of Estrogen-related Receptor \hat{l}_{\pm} -1. Journal of Biological Chemistry, 2001, 276, 28465-28470.	3.4	56
131	Aromatase P450 Expression in a Feminizing Adrenal Adenoma Presenting as Isosexual Precocious Puberty. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 649-652.	3.6	36
132	Evaluation of the mechanism of aromatase cytochrome P450. A site-directed mutagenesis study. FEBS Journal, 2001, 268, 243-251.	0.2	2
133	Aromatase P450 Expression in a Feminizing Adrenal Adenoma Presenting as Isosexual Precocious Puberty. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 649-652.	3.6	9
134	Structure-function studies of DT-diaphorase (NQO1) and NRH:quinone oxidoreductase (NQO2)11This article is dedicated to the memory of Dr. Lars Ernster, who recently passed away Free Radical Biology and Medicine, 2000, 29, 276-284.	2.9	89
135	Regulation of Aromatase Expression in Human Ovarian Surface Epithelial Cells1. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4889-4899.	3.6	20
136	PNRC: A Proline-Rich Nuclear Receptor Coregulatory Protein That Modulates Transcriptional Activation of Multiple Nuclear Receptors Including Orphan Receptors SF1 (Steroidogenic Factor 1) and ERRÎ \pm 1 (Estrogen Related Receptor Î \pm -1). Molecular Endocrinology, 2000, 14, 986-998.	3.7	71
137	Molecular Characterization of Binding of Substrates and Inhibitors to DT-Diaphorase: Combined Approach Involving Site-Directed Mutagenesis, Inhibitor-Binding Analysis, and Computer Modeling. Molecular Pharmacology, 1999, 56, 272-278.	2.3	60
138	Identification and Characterization of a cAMP-Responsive Element in the Region Upstream from Promoter 1.3 of the Human Aromatase Gene. Archives of Biochemistry and Biophysics, 1999, 371, 179-190.	3.0	47
139	Characterization of a Silencer Element in the Human Aromatase Gene. Archives of Biochemistry and Biophysics, 1998, 353, 213-220.	3.0	29
140	Aromatase and breast cancer. Frontiers in Bioscience - Landmark, 1998, 3, d922-933.	3.0	92
141	Suppression of Breast Cancer Cell Growth with Grape Juice. Pharmaceutical Biology, 1998, 36, 53-61.	2.9	19
142	Molecular Basis of the Catalytic Differences among DT-diaphorase of Human, Rat, and Mouse. Journal of Biological Chemistry, 1997, 272, 1437-1439.	3.4	49
143	Catalytic Properties of NAD(P)H:Quinone Oxidoreductase-2 (NQO2), a Dihydronicotinamide Riboside Dependent Oxidoreductase. Archives of Biochemistry and Biophysics, 1997, 347, 221-228.	3.0	133
144	Autocrine and paracrine actions of breast tumor aromatase. A three-dimensional cell culture study involving aromatase transfected MCF-7 and T-47D cells. Journal of Steroid Biochemistry and Molecular Biology, 1997, 63, 29-36.	2.5	87

#	Article	IF	CITATIONS
145	Gene regulation studies of aromatase expression in breast cancer and adipose stromal cells. Journal of Steroid Biochemistry and Molecular Biology, 1997, 61, 273-280.	2.5	49
146	Aromatase gene expression and its exon I usage in human breast tumors. Detection of aromatase messenger RNA by reverse transcription-polymerase chain reaction. Journal of Steroid Biochemistry and Molecular Biology, 1996, 59, 163-171.	2.5	128
147	Identification of a Promoter That Controls Aromatase Expression in Human Breast Cancer and Adipose Stromal Cells. Journal of Biological Chemistry, 1996, 271, 15194-15202.	3.4	37
148	Active Site Studies of DT-diaphorase Employing Artificial Flavins. Journal of Biological Chemistry, 1995, 270, 2512-2516.	3.4	23
149	DT-diaphorase. Journal of Biological Chemistry, 1995, 270, 1198-1204.	3.4	102
150	A twoâ€domain structure for the two subunits of NAD(P)H:quinone acceptor oxidoreductase. Protein Science, 1994, 3, 51-57.	7.6	36
151	Mouse liver NAD(P)H:quinone acceptor oxidoreductase: Protein sequence analysis by tandem mass spectrometry, cDNA cloning, expression in <i>Escherichia coli</i> , and enzyme activity analysis. Protein Science, 1994, 3, 1296-1304.	7.6	33
152	Catalytic efficiency of expressed aromatase following site-directed mutagenesis. BBA - Proteins and Proteomics, 1993, 1163, 195-200.	2.1	18
153	Structure-function studies of human aromatase. Journal of Steroid Biochemistry and Molecular Biology, 1993, 44, 347-356.	2.5	42
154	Kinetic properties of aromatase mutants Pro308Phe, Asp309Asn, and Asp309Ala and their interactions with aromatase inhibitors. Journal of Steroid Biochemistry and Molecular Biology, 1992, 43, 693-701.	2.5	55
155	Photodependent inhibition of rat liver NAD(P)H:quinone acceptor oxidoreductase by (A)-2-azido-NAD+ and (A)-8-azido-NAD+. Biochemistry, 1991, 30, 6942-6948.	2.5	9
156	Inhibition of Monoamine Oxidase by 7-Chloro-4-Nitrobenzofurazan. Journal of Neurochemistry, 1990, 55, 813-818.	3.9	4
157	Rat liver NAD(P)H:quinone oxidoreductase: cDNA expression and site-directed mutagenesis. Biochemical and Biophysical Research Communications, 1990, 169, 1087-1093.	2.1	17
158	Expression of Human Placental Aromatase inSaccharomyces cerevisiae. Molecular Endocrinology, 1989, 3, 1477-1487.	3.7	60
159	Structure-function relationship of NAD(P)H:quinone reductase: characterization of amino-terminal blocking group and essential tyrosine and lysine residues. Biochemistry, 1988, 27, 6877-6883.	2.5	27
160	Human Aromatase: cDNA Cloning, Southern Blot Analysis, and Assignment of the Gene to Chromosome 15. DNA and Cell Biology, 1988, 7, 27-38.	5.2	230
161	Purification and characterization of aromatase from human placenta. Steroids, 1987, 50, 37-50.	1.8	18
162	Amino terminal sequence analysis of human placenta aromatase. Biochemical and Biophysical Research Communications, 1986, 135, 713-719.	2.1	55

SHIUAN CHEN

#	Article	IF	CITATIONS
163	Affinity labeling of the active site of pig liver NADH-cytochrome b5 reductase by 5?-p-fluorosulfonylbenzoyladenosine. The Protein Journal, 1986, 5, 133-145.	1.1	3