Marieke M Van Katwijk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4541714/publications.pdf

Version: 2024-02-01

86 papers 6,165 citations

71102 41 h-index 71685 **76** g-index

86 all docs 86 docs citations

86 times ranked 4800 citing authors

#	Article	IF	CITATIONS
1	Tropical Biogeomorphic Seagrass Landscapes for Coastal Protection: Persistence and Wave Attenuation During Major Storms Events. Ecosystems, 2021, 24, 301-318.	3.4	24
2	A dynamic view of seagrass meadows in the wake of successful green turtle conservation. Nature Ecology and Evolution, 2021, 5, 553-555.	7.8	23
3	Rewilding the Sea with Domesticated Seagrass. BioScience, 2021, 71, 1171-1178.	4.9	13
4	Water motion and vegetation control the pH dynamics in seagrassâ€dominated bays. Limnology and Oceanography, 2020, 65, 349-362.	3.1	11
5	Mimicry of emergent traits amplifies coastal restoration success. Nature Communications, 2020, 11 , 3668.	12.8	67
6	Seagrass coastal protection services reduced by invasive species expansion and megaherbivore grazing. Journal of Ecology, 2020, 108, 2025-2037.	4.0	23
7	Facilitating foundation species: The potential for plant–bivalve interactions to improve habitat restoration success. Journal of Applied Ecology, 2020, 57, 1161-1179.	4.0	63
8	A Mutualism Between Unattached Coralline Algae and Seagrasses Prevents Overgrazing by Sea Turtles. Ecosystems, 2020, 23, 1631-1642.	3.4	8
9	Recent trend reversal for declining European seagrass meadows. Nature Communications, 2019, 10, 3356.	12.8	227
10	Ecosystem engineering creates a new path to resilience in plants with contrasting growth strategies. Oecologia, 2019, 191, 1015-1024.	2.0	3
11	Maintaining Tropical Beaches with Seagrass and Algae: A Promising Alternative to Engineering Solutions. BioScience, 2019, 69, 136-142.	4.9	56
12	Nutrient availability induces community shifts in seagrass meadows grazed by turtles. PeerJ, 2019, 7, e7570.	2.0	8
13	Exposure of coastal ecosystems to river plume spreading across a near-equatorial continental shelf. Continental Shelf Research, 2018, 153, 1-15.	1.8	11
14	Seasonal and latitudinal variation in seagrass mechanical traits across Europe: The influence of local nutrient status and morphometric plasticity. Limnology and Oceanography, 2018, 63, 37-46.	3.1	22
15	Latitudinal Patterns in European Seagrass Carbon Reserves: Influence of Seasonal Fluctuations versus Short-Term Stress and Disturbance Events. Frontiers in Plant Science, 2018, 9, 88.	3.6	18
16	Living in the intertidal: desiccation and shading reduce seagrass growth, but high salinity or population of origin have no additional effect. PeerJ, 2018, 6, e5234.	2.0	10
17	The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems–Âa review. Biological Reviews, 2017, 92, 1521-1538.	10.4	217
18	Individual and population indicators of Zostera japonica respond quickly to experimental addition of sediment-nutrient and organic matter. Marine Pollution Bulletin, 2017, 114, 201-209.	5.0	14

#	Article	lF	Citations
19	Consensus forecasting of intertidal seagrass habitat in the Wadden Sea. Journal of Applied Ecology, 2016, 53, 1800-1813.	4.0	36
20	Global analysis of seagrass restoration: the importance of largeâ€scale planting. Journal of Applied Ecology, 2016, 53, 567-578.	4.0	348
21	Unpredictability in seagrass restoration: analysing the role of positive feedback and environmental stress on <i><scp>Z</scp>ostera noltii</i> transplants. Journal of Applied Ecology, 2016, 53, 774-784.	4.0	55
22	Combined nutrient and macroalgae loads lead to response in seagrass indicator properties. Marine Pollution Bulletin, 2016, 106, 174-182.	5.0	18
23	Non-native seagrass Halophila stipulacea forms dense mats under eutrophic conditions in the Caribbean. Journal of Sea Research, 2016, 115, 1-5.	1.6	56
24	Land Use Effects on Mangrove Nutrient Status in Phang Nga Bay, Thailand. Land Degradation and Development, 2016, 27, 68-76.	3.9	12
25	The exchange of dissolved nutrients between the water column and substrate pore-water due to hydrodynamic adjustment at seagrass meadow edges: A flume study. Limnology and Oceanography, 2016, 61, 2286-2295.	3.1	5
26	Marine <i>Phytophthora </i> species can hamper conservation and restoration of vegetated coastal ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160812.	2.6	38
27	Pollen limitation may be a common Allee effect in marine hydrophilous plants: implications for decline and recovery in seagrasses. Oecologia, 2016, 182, 595-609.	2.0	14
28	Surviving in Changing Seascapes: Sediment Dynamics as Bottleneck for Long-Term Seagrass Presence. Ecosystems, 2016, 19, 296-310.	3.4	38
29	Understanding seagrass resilience in temperate systems: the importance of timing of the disturbance. Ecological Indicators, 2016, 66, 190-198.	6.3	10
30	Response of seagrass indicators to shifts in environmental stressors: A global review and management synthesis. Ecological Indicators, 2016, 63, 310-323.	6.3	120
31	Developing social-ecological system indicators using group model building. Ocean and Coastal Management, 2015, 109, 29-39.	4.4	28
32	Developing an effective adaptive monitoring network to support integrated coastal management in a multiuser nature reserve. Ecology and Society, 2015, 20, .	2.3	8
33	Rhizome starch as indicator for temperate seagrass winter survival. Ecological Indicators, 2015, 49, 53-60.	6.3	35
34	Seagrasses as indicators for coastal trace metal pollution: A global meta-analysis serving as a benchmark, and a Caribbean case study. Environmental Pollution, 2014, 195, 210-217.	7.5	63
35	Eutrophication threatens Caribbean seagrasses – An example from Curaçao and Bonaire. Marine Pollution Bulletin, 2014, 89, 481-486.	5.0	30
36	Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132890.	2.6	123

#	Article	IF	Citations
37	Seagrasses are negatively affected by organic matter loading and Arenicola marina activity in a laboratory experiment. Oecologia, 2014, 175, 677-685.	2.0	20
38	How to structure and prioritize information needs in support of monitoring design for Integrated Coastal Management. Journal of Sea Research, 2014, 86, 23-33.	1.6	16
39	Cover versus recovery: Contrasting responses of two indicators in seagrass beds. Marine Pollution Bulletin, 2014, 87, 211-219.	5.0	9
40	Uptake of nitrogen from compound pools by the seagrass Zostera noltii. Journal of Experimental Marine Biology and Ecology, 2014, 460, 47-52.	1,5	17
41	Toxic effects of increased sediment nutrient and organic matter loading on the seagrass Zostera noltii. Aquatic Toxicology, 2014, 155, 253-260.	4.0	47
42	Potential for landscape-scale positive interactions among tropical marine ecosystems. Marine Ecology - Progress Series, 2014, 503, 289-303.	1.9	86
43	Comparison of the influence of patch-scale and meadow-scale characteristics on flow within seagrass meadows: a flume study. Marine Ecology - Progress Series, 2014, 516, 49-59.	1.9	19
44	Biomechanical response of two fast-growing tropical seagrass species subjected to in situ shading and sediment fertilization. Journal of Experimental Marine Biology and Ecology, 2013, 446, 186-193.	1.5	29
45	Comparing the performance of species distribution models of Zostera marina: Implications for conservation. Journal of Sea Research, 2013, 83, 56-64.	1.6	35
46	Sulfide as a soil phytotoxin—a review. Frontiers in Plant Science, 2013, 4, 268.	3.6	260
47	Low-Canopy Seagrass Beds Still Provide Important Coastal Protection Services. PLoS ONE, 2013, 8, e62413.	2.5	200
48	Marine megaherbivore grazing may increase seagrass tolerance to high nutrient loads. Journal of Ecology, 2012, 100, 546-560.	4.0	102
49	Suppressing antagonistic bioengineering feedbacks doubles restoration success. Ecological Applications, 2012, 22, 1224-1231.	3.8	40
50	Changing Paradigms in Seagrass Restoration. Restoration Ecology, 2012, 20, 427-430.	2.9	89
51	Waves and high nutrient loads jointly decrease survival and separately affect morphological and biomechanical properties in the seagrass <i>Zostera noltii</i> Limnology and Oceanography, 2012, 57, 1664-1672.	3.1	74
52	Resilience of Zostera noltii to burial or erosion disturbances. Marine Ecology - Progress Series, 2012, 449, 133-143.	1.9	38
53	A Three-Stage Symbiosis Forms the Foundation of Seagrass Ecosystems. Science, 2012, 336, 1432-1434.	12.6	204
54	Limited toxicity of NHx pulses on an early and late successional tropical seagrass species: Interactions with pH and light level. Aquatic Toxicology, 2011, 104, 73-79.	4.0	21

#	Article	IF	Citations
55	Positive Feedbacks in Seagrass Ecosystems – Evidence from Large-Scale Empirical Data. PLoS ONE, 2011, 6, e16504.	2.5	111
56	Early warning indicators for river nutrient and sediment loads in tropical seagrass beds: A benchmark from a near-pristine archipelago in Indonesia. Marine Pollution Bulletin, 2011, 62, 1512-1520.	5.0	51
57	Ontogenetic habitat shift, population growth, and burrowing behavior of the Indo-Pacific beach star, Archaster typicus (Echinodermata; Asteroidea). Marine Biology, 2011, 158, 639-648.	1.5	23
58	How ecological engineering can serve in coastal protection. Ecological Engineering, 2011, 37, 113-122.	3.6	411
59	Species pool versus site limitations of macrophytes in urban waters. Aquatic Sciences, 2010, 72, 379-389.	1.5	10
60	Alternative Stable States Driven by Density-Dependent Toxicity. Ecosystems, 2010, 13, 841-850.	3.4	33
61	Sediment modification by seagrass beds: Muddification and sandification induced by plant cover and environmental conditions. Estuarine, Coastal and Shelf Science, 2010, 89, 175-181.	2.1	122
62	Spatial selfâ€organized patterning in seagrasses along a depth gradient of an intertidal ecosystem. Ecology, 2010, 91, 362-369.	3.2	98
63	Vulnerability to eutrophication of a semi-annual life history: A lesson learnt from an extinct eelgrass (Zostera marina) population. Biological Conservation, 2010, 143, 248-254.	4.1	44
64	Nutrient availability correlates with bicarbonate accumulation in marine and freshwater sediments – Empirical evidence from pore water analyses. Applied Geochemistry, 2010, 25, 1825-1829.	3.0	10
65	The Role of Ecological Science in Environmental Policy Making: from a Pacification toward a Facilitation Strategy. Ecology and Society, 2009, 14, .	2.3	27
66	Predicting habitat suitability in temperate seagrass ecosystems. Limnology and Oceanography, 2009, 54, 2018-2024.	3.1	27
67	Guidelines for seagrass restoration: Importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Marine Pollution Bulletin, 2009, 58, 179-188.	5.0	244
68	Urban drainage systems: An undervalued habitat for aquatic macroinvertebrates. Biological Conservation, 2009, 142, 1105-1115.	4.1	94
69	Effects of shoot stiffness, shoot size and current velocity on scouring sediment from around seedlings and propagules. Marine Ecology - Progress Series, 2009, 388, 293-297.	1.9	93
70	Toxicity of reduced nitrogen in eelgrass (Zostera marina) is highly dependent on shoot density and pH. Oecologia, 2008, 158, 411-419.	2.0	69
71	Before and after wasting disease in common eelgrass Zostera marina along the French Atlantic coasts: a general overview and first accurate mapping. Diseases of Aquatic Organisms, 2008, 79, 249-255.	1.0	32
72	Ecosystem engineering by annual intertidal seagrass beds: Sediment accretion and modification. Estuarine, Coastal and Shelf Science, 2007, 74, 344-348.	2.1	257

#	Article	IF	CITATIONS
73	Positive Feedbacks in Seagrass Ecosystems: Implications for Success in Conservation and Restoration. Ecosystems, 2007, 10, 1311-1322.	3.4	235
74	Planting density, hydrodynamic exposure and mussel beds affect survival of transplanted intertidal eelgrass. Marine Ecology - Progress Series, 2007, 336, 121-129.	1.9	67
75	Pieter Hendrik Nienhuis: Aquatic Ecologist and Environmental Scientist. Hydrobiologia, 2006, 565, 1-18.	2.0	6
76	Effects of locally varying exposure, sediment type and low-tide water cover on Zostera marina recruitment from seed. Aquatic Botany, 2004, 80, 1-12.	1.6	54
77	Habitat suitability of the Wadden Sea for restoration of Zostera marina beds. Helgoland Marine Research, 2000, 54, 117-128.	1.3	48
78	Policy plans and management measures to restore eelgrass (Zostera marina L.) in the Dutch Wadden Sea. Helgoland Marine Research, 2000, 54, 151-158.	1.3	38
79	Effects of water dynamics on Zostera marina: transplantation experiments in the intertidal Dutch Wadden Sea. Marine Ecology - Progress Series, 2000, 208, 107-118.	1.9	91
80	Effects of salinity and nutrient load and their interaction on Zostera marina. Marine Ecology - Progress Series, 1999, 190, 155-165.	1.9	72
81	Suitability of Zostera marina populations for transplantation to the Wadden Sea as determined by a mesocosm shading experiment. Aquatic Botany, 1998, 60, 283-305.	1.6	47
82	Ammonium toxicity in eelgrass Zostera marina. Marine Ecology - Progress Series, 1997, 157, 159-173.	1.9	202
83	Impact of hydrology on phyto- and zooplankton community composition in floodplain lakes along the Lower Rhine and Meuse. Journal of Plankton Research, 1994, 16, 351-373.	1.8	98
84	Sabaki River sediment load and coral stress: correlation between sediments and condition of the Malindi-Watamu reefs in Kenya (Indian Ocean). Marine Biology, 1993, 117, 675-683.	1.5	79
85	Temperature, salinity, insolation and wasting disease of eelgrass (Zostera marina L.) in the Dutch Wadden Sea in the 1930's. Journal of Sea Research, 1990, 25, 395-404.	1.0	45
86	Eelgrass condition and turbidity in the Dutch Wadden Sea. Aquatic Botany, 1990, 37, 71-85.	1.6	166