Teja Tscharntke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4541584/publications.pdf

Version: 2024-02-01

329 papers 54,962 citations

108 h-index

219 g-index

332 all docs 332 docs citations

times ranked

332

28710 citing authors

#	Article	IF	CITATIONS
1	Fire and landscape context shape plant and butterfly diversity in a South African shrubland. Diversity and Distributions, 2022, 28, 357-371.	1.9	9
2	Resolving the <scp>SLOSS</scp> dilemma for biodiversity conservation: a research agenda. Biological Reviews, 2022, 97, 99-114.	4.7	48
3	Broadening the scope of empirical studies to answer persistent questions in landscape-moderated effects on biodiversity and ecosystem functioning. Advances in Ecological Research, 2022, 65, 109-131.	1.4	4
4	Trait-dependent responses of birds and bats to season and dry forest distance in tropical agroforestry. Agriculture, Ecosystems and Environment, 2022, 325, 107751.	2.5	7
5	Restoring biodiversity needs more than reducing pesticides. Trends in Ecology and Evolution, 2022, 37, 115-116.	4.2	7
6	Increasing landscape complexity enhances species richness of farmland arthropods, agri-environment schemes also abundance – A meta-analysis. Agriculture, Ecosystems and Environment, 2022, 326, 107822.	2.5	32
7	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	1.5	19
8	Land-use trajectories for sustainable land system transformations: Identifying leverage points in a global biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	27
9	Strip intercropping of wheat and oilseed rape enhances biodiversity and biological pest control in a conventionally managed farm scenario. Journal of Applied Ecology, 2022, 59, 1513-1523.	1.9	26
10	Prioritise the most effective measures for biodiversity-friendly agriculture. Trends in Ecology and Evolution, 2022, , .	4.2	2
11	Cacao flower visitation: Low pollen deposition, low fruit set and dominance of herbivores. Ecological Solutions and Evidence, 2022, 3, .	0.8	9
12	Landâ€use change differentially affects endemic, forest and openâ€land butterflies in Madagascar. Insect Conservation and Diversity, 2022, 15, 606-620.	1.4	4
13	Scale-dependent effectiveness of on-field vs. off-field agri-environmental measures for wild bees. Basic and Applied Ecology, 2022, 62, 55-60.	1.2	5
14	Biodiversity and yield tradeâ€offs for organic farming. Ecology Letters, 2022, 25, 1699-1710.	3.0	25
15	Wild bees benefit from low urbanization levels and suffer from pesticides in a tropical megacity. Agriculture, Ecosystems and Environment, 2022, 336, 108019.	2.5	6
16	Spatiotemporal land-use diversification for biodiversity. Trends in Ecology and Evolution, 2022, , .	4.2	2
17	Bee abundance and soil nitrogen availability interactively modulate apple quality and quantity in intensive agricultural landscapes of China. Agriculture, Ecosystems and Environment, 2021, 305, 107168.	2.5	10
18	Crop pollination services: Complementary resource use by social vs solitary bees facing crops with contrasting flower supply. Journal of Applied Ecology, 2021, 58, 476-485.	1.9	29

#	Article	IF	CITATIONS
19	Species–habitat networks elucidate landscape effects on habitat specialisation of natural enemies and pollinators. Ecology Letters, 2021, 24, 288-297.	3.0	21
20	Combining land-sparing and land-sharing in European landscapes. Advances in Ecological Research, 2021, , 251-303.	1.4	39
21	Large carabids enhance weed seed removal in organic fields and in large-scale, but not small-scale agriculture. Landscape Ecology, 2021, 36, 427-438.	1.9	4
22	Decreasing predation rates and shifting predator compositions along a landâ€use gradient in Madagascar's vanilla landscapes. Journal of Applied Ecology, 2021, 58, 360-371.	1.9	18
23	Shade-Tree Rehabilitation in Vanilla Agroforests is Yield Neutral and May Translate into Landscape-Scale Canopy Cover Gains. Ecosystems, 2021, 24, 1253-1267.	1.6	15
24	Using Field Experiments to Inform Biodiversity Monitoring in Agricultural Landscapes. Innovations in Landscape Research, 2021, , 425-436.	0.2	0
25	Landâ€use intensification increases richness of native and exotic herbaceous plants, but not endemics, in Malagasy vanilla landscapes. Diversity and Distributions, 2021, 27, 784-798.	1.9	14
26	Floral resource diversification promotes solitary bee reproduction and may offset insecticide effects – evidence from a semiâ€field experiment. Ecology Letters, 2021, 24, 668-675.	3.0	58
27	Preserving 40% forest cover is a valuable and wellâ€supported conservation guideline: reply to Banksâ€Leite <i>et al</i> . Ecology Letters, 2021, 24, 1114-1116.	3.0	7
28	Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210212.	1.2	43
29	Landscape and farm-level management for conservation of potential pollinators in Indonesian cocoa agroforests. Biological Conservation, 2021, 257, 109106.	1.9	16
30	Local and landscape responses of biodiversity in calcareous grasslands. Biodiversity and Conservation, 2021, 30, 2415-2432.	1,2	9
31	Effects of three flower field types on bumblebees and their pollen diets. Basic and Applied Ecology, 2021, 52, 95-108.	1.2	16
32	Taxonomic and functional homogenization of farmland birds along an urbanization gradient in a tropical megacity. Global Change Biology, 2021, 27, 4980-4994.	4.2	34
33	Organic farming supports lower pest infestation, but fewer natural enemies than flower strips. Journal of Applied Ecology, 2021, 58, 2277-2286.	1.9	8
34	Disrupting plant-pollinator systems endangers food security. One Earth, 2021, 4, 1217-1219.	3.6	5
35	Beyond organic farming – harnessing biodiversity-friendly landscapes. Trends in Ecology and Evolution, 2021, 36, 919-930.	4.2	219
36	Bat guilds respond differently to habitat loss and fragmentation at different scales in macadamia orchards in South Africa. Agriculture, Ecosystems and Environment, 2021, 320, 107588.	2.5	9

#	Article	IF	CITATIONS
37	Hand pollination of global crops – A systematic review. Basic and Applied Ecology, 2021, 56, 299-321.	1.2	32
38	Environmental heterogeneity predicts global species richness patterns better than area. Global Ecology and Biogeography, 2021, 30, 842-851.	2.7	32
39	Increasing connectivity enhances habitat specialists but simplifies plant–insect food webs. Oecologia, 2021, 195, 539-546.	0.9	9
40	Crop diversity effects on temporal agricultural production stability across European regions. Regional Environmental Change, 2021, 21, 1.	1.4	13
41	A plant–pollinator metanetwork along a habitat fragmentation gradient. Ecology Letters, 2021, 24, 2700-2712.	3.0	22
42	Tropical land use drives endemic versus exotic ant communities in a global biodiversity hotspot. Biodiversity and Conservation, 2021, 30, 4417-4434.	1.2	4
43	Foraging of honey bees in agricultural landscapes with changing patterns of flower resources. Agriculture, Ecosystems and Environment, 2020, 291, 106792.	2.5	40
44	Hand pollination, not pesticides or fertilizers, increases cocoa yields and farmer income. Agriculture, Ecosystems and Environment, 2020, 304, 107160.	2.5	22
45	Arthropod functional traits shaped by landscape-scale field size, local agri-environment schemes and edge effects. Basic and Applied Ecology, 2020, 48, 102-111.	1.2	25
46	Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nature Ecology and Evolution, 2020, 4, 1150-1152.	3.4	54
47	Co-benefits of soil carbon protection for invertebrate conservation. Biological Conservation, 2020, 252, 108859.	1.9	5
48	The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecology Letters, 2020, 23, 1488-1498.	3.0	319
49	The Unmeasured ecological effect of mosquito control. European Journal of Ecology, 2020, 6, 71-76.	0.1	1
50	Crop asynchrony stabilizes food production. Nature, 2020, 588, E7-E12.	13.7	19
51	Landâ€use history determines ecosystem services and conservation value in tropical agroforestry. Conservation Letters, 2020, 13, e12740.	2.8	67
52	Designing optimal humanâ€modified landscapes for forest biodiversity conservation. Ecology Letters, 2020, 23, 1404-1420.	3.0	279
53	Agriculture intensification reduces plant taxonomic and functional diversity across European arable systems. Functional Ecology, 2020, 34, 1448-1460.	1.7	39
54	Biologia Futura: landscape perspectives on farmland biodiversity conservation. Biologia Futura, 2020, 71, 9-18.	0.6	65

#	Article	IF	Citations
55	Configurational crop heterogeneity increases withinâ€field plant diversity. Journal of Applied Ecology, 2020, 57, 654-663.	1.9	47
56	Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nature Communications, 2020, 11, 1186.	5.8	156
57	Agriâ€environment schemes enhance pollinator richness and abundance but bumblebee reproduction depends on field size. Journal of Applied Ecology, 2020, 57, 1818-1828.	1.9	39
58	Plant–pollinator interactions along an urbanization gradient from cities and villages to farmland landscapes. Ecosphere, 2020, 11, e03020.	1.0	21
59	Landscape agricultural simplification correlates positively with the spatial distribution of a specialist yet negatively with a generalist pest. Scientific Reports, 2020, 10, 344.	1.6	16
60	Decrease in \hat{l}^2 $\hat{a} \in d$ iversity, but not in $\hat{l} \pm \hat{a} \in d$ iversity, of ants in intensively managed coffee plantations. Insect Conservation and Diversity, 2020, 13, 445-455.	1.4	7
61	Unmanned aerial vehicles for biodiversity-friendly agricultural landscapes - A systematic review. Science of the Total Environment, 2020, 732, 139204.	3.9	67
62	Landscape configuration, organic management, and withinâ€field position drive functional diversity of spiders and carabids. Journal of Applied Ecology, 2019, 56, 63-72.	1.9	77
63	Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16442-16447.	3.3	312
64	Mapping change in biodiversity and ecosystem function research: food webs foster integration of experiments and science policy. Advances in Ecological Research, 2019, , 297-322.	1.4	16
65	Transferring biodiversity-ecosystem function research to the management of â€real-world' ecosystems. Advances in Ecological Research, 2019, 61, 323-356.	1.4	51
66	Measuring What Matters: Actionable Information for Conservation Biocontrol in Multifunctional Landscapes. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	34
67	Effectiveness of agriâ€environmental management on pollinators is moderated more by ecological contrast than by landscape structure or landâ€use intensity. Ecology Letters, 2019, 22, 1493-1500.	3.0	47
68	A multitrophic perspective on biodiversity–ecosystem functioning research. Advances in Ecological Research, 2019, 61, 1-54.	1.4	95
69	Contrasting effects of natural shrubland and plantation forests on bee assemblages at neighboring apple orchards in Beijing, China. Biological Conservation, 2019, 237, 456-462.	1.9	28
70	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	4.7	524
71	Reducing Fertilizer and Avoiding Herbicides in Oil Palm Plantations—Ecological and Economic Valuations. Frontiers in Forests and Global Change, 2019, 2, .	1.0	75
72	Vulnerability of Ecosystem Services in Farmland Depends on Landscape Management. , 2019, , 91-96.		5

#	Article	IF	CITATIONS
73	Autonomous sound recording outperforms human observation for sampling birds: a systematic map and user guide. Ecological Applications, 2019, 29, e01954.	1.8	101
74	Connectedness of habitat fragments boosts conservation benefits for butterflies, but only in landscapes with little cropland. Landscape Ecology, 2019, 34, 1045-1056.	1.9	13
75	Ecosystem services and disservices by birds, bats and monkeys change with macadamia landscape heterogeneity. Journal of Applied Ecology, 2019, 56, 2069-2078.	1.9	25
76	Insect and plant traits drive local and landscape effects on herbivory in grassland fragments. Ecosphere, 2019, 10, e02717.	1.0	9
77	Biological control of the coffee berry borer: Main natural enemies, control success, and landscape influence. Biological Control, 2019, 136, 103992.	1.4	40
78	Landâ€sharing/â€sparing connectivity landscapes for ecosystem services and biodiversity conservation. People and Nature, 2019, 1, 262-272.	1.7	152
79	Critical factors limiting pollination success in oil palm: A systematic review. Agriculture, Ecosystems and Environment, 2019, 280, 152-160.	2.5	27
80	Cultural Ecosystem Services Provided by Urban Green Change along an Urban-Periurban Gradient. Sustainability, 2019, 11, 645.	1.6	44
81	Ecological-economic trade-offs of Diversified Farming Systems – A review. Ecological Economics, 2019, 160, 251-263.	2.9	199
82	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	3.0	364
83	Novel approaches to sampling pollinators in whole landscapes: a lesson for landscape-wide biodiversity monitoring. Landscape Ecology, 2019, 34, 1057-1067.	1.9	26
84	Maizeâ€dominated landscapes reduce bumblebee colony growth through pollen diversity loss. Journal of Applied Ecology, 2019, 56, 294-304.	1.9	38
85	The use of bat houses as day roosts in macadamia orchards, South Africa. PeerJ, 2019, 7, e6954.	0.9	5
86	Insect pollination as a key factor for strawberry physiology and marketable fruit quality. Agriculture, Ecosystems and Environment, 2018, 258, 197-204.	2.5	63
87	Spatial community turnover of pollinators is relaxed by semi-natural habitats, but not by mass-flowering crops in agricultural landscapes. Biological Conservation, 2018, 221, 59-66.	1.9	17
88	Diverging perceptions by social groups on cultural ecosystem services provided by urban green. Landscape and Urban Planning, 2018, 175, 161-168.	3.4	79
89	Winners and losers of national and global efforts to reconcile agricultural intensification and biodiversity conservation. Global Change Biology, 2018, 24, 2212-2228.	4.2	62
90	Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172242.	1.2	153

#	Article	IF	Citations
91	Primary rainforest amount at the landscape scale mitigates bird biodiversity loss and biotic homogenization. Journal of Applied Ecology, 2018, 55, 1288-1298.	1.9	28
92	Ecosystem services and disservices provided by small rodents in arable fields: Effects of local and landscape management. Journal of Applied Ecology, 2018, 55, 548-558.	1.9	39
93	Small-scale agricultural landscapes and organic management support wild bee communities of cereal field boundaries. Agriculture, Ecosystems and Environment, 2018, 254, 92-98.	2.5	40
94	Cocoa production: Monocultures are not the solution to climate adaptationâ€"Response to Abdulai etÂal. 2017. Global Change Biology, 2018, 24, 561-562.	4.2	10
95	Estimating bird detection distances in sound recordings for standardizing detection ranges and distance sampling. Methods in Ecology and Evolution, 2018, 9, 1928-1938.	2.2	44
96	Rice ecosystem services in South-east Asia. Paddy and Water Environment, 2018, 16, 211-224.	1.0	20
97	Comparing the sampling performance of sound recorders versus point counts in bird surveys: A metaâ€analysis. Journal of Applied Ecology, 2018, 55, 2575-2586.	1.9	85
98	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	3.3	401
99	Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networks. Nature Ecology and Evolution, 2018, 2, 1408-1417.	3.4	83
100	Trap nests for bees and wasps to analyse trophic interactions in changing environments—A systematic overview and user guide. Methods in Ecology and Evolution, 2018, 9, 2226-2239.	2.2	64
101	Is habitat fragmentation good for biodiversity?. Biological Conservation, 2018, 226, 9-15.	1.9	430
102	Natural vegetation and bug abundance promote insectivorous bat activity in macadamia orchards, South Africa. Biological Conservation, 2018, 226, 16-23.	1.9	24
103	More than Yield: Ecosystem Services of Traditional versus Modern Crop Varieties Revisited. Sustainability, 2018, 10, 2834.	1.6	69
104	Amphibian and reptile communities of upland and riparian sites across Indonesian oil palm, rubber and forest. Global Ecology and Conservation, 2018, 16, e00492.	1.0	24
105	Responses of insect herbivores and herbivory to habitat fragmentation: a hierarchical metaâ€analysis. Ecology Letters, 2017, 20, 264-272.	3.0	105
106	A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 2017, 23, 4946-4957.	4.2	259
107	The role of ants, birds and bats for ecosystem functions and yield in oil palm plantations. Ecology, 2017, 98, 1945-1956.	1.5	33
108	Experts' versus laypersons' perception of urban cultural ecosystem services. Urban Ecosystems, 2017, 20, 715-727.	1.1	41

#	Article	IF	CITATIONS
109	Landscapeâ€scale interactions of spatial and temporal cropland heterogeneity drive biological control of cereal aphids. Journal of Applied Ecology, 2017, 54, 1804-1813.	1.9	82
110	Similar alpha and beta diversity changes in tropical ant communities, comparing savannas and rainforests in Brazil and Indonesia. Oecologia, 2017, 185, 487-498.	0.9	17
111	Grassland management in agricultural vs. forested landscapes drives butterfly and bird diversity. Biological Conservation, 2017, 216, 51-59.	1.9	37
112	Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nature Ecology and Evolution, 2017, 1, 1511-1519.	3.4	137
113	Trophy hunting certification. Nature Ecology and Evolution, 2017, 1, 1791-1793.	3.4	10
114	Neglected pollinators: Can enhanced pollination services improve cocoa yields? A review. Agriculture, Ecosystems and Environment, 2017, 247, 137-148.	2.5	51
115	A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biological Reviews, 2017, 92, 1539-1569.	4.7	222
116	Local and landscape drivers of arthropod diversity and decomposition processes in oil palm leaf axils. Agricultural and Forest Entomology, 2017, 19, 60-69.	0.7	17
117	Adding Some Green to the Greening: Improving the EU's Ecological Focus Areas for Biodiversity and Farmers. Conservation Letters, 2017, 10, 517-530.	2.8	140
118	The former Iron Curtain still drives biodiversity–profit trade-offs in German agriculture. Nature Ecology and Evolution, 2017, 1, 1279-1284.	3.4	114
119	Measuring sound detection spaces for acoustic animal sampling and monitoring. Biological Conservation, 2016, 201, 29-37.	1.9	94
120	Actionable knowledge for ecological intensification of agriculture. Frontiers in Ecology and the Environment, 2016, 14, 209-216.	1.9	117
121	Land-use intensification causes multitrophic homogenization of grassland communities. Nature, 2016, 540, 266-269.	13.7	404
122	Plant size affects mutualistic and antagonistic interactions and reproductive success across 21 Brassicaceae species. Ecosphere, 2016, 7, e01529.	1.0	17
123	Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150275.	1.8	222
124	Tropical forest loss and its multitrophic effects on insect herbivory. Ecology, 2016, 97, 3315-3325.	1.5	62
125	Biological control in Indonesian oil palm potentially enhanced by landscape context. Agriculture, Ecosystems and Environment, 2016, 232, 141-149.	2.5	44
126	Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nature Communications, 2016, 7, 13137.	5.8	186

#	Article	IF	Citations
127	When natural habitat fails to enhance biological pest control – Five hypotheses. Biological Conservation, 2016, 204, 449-458.	1.9	388
128	Spillover of arthropods from cropland to protected calcareous grassland $\hat{a} \in \text{``the neighbouring habitat matters.}$ Agriculture, Ecosystems and Environment, 2016, 235, 127-133.	2.5	45
129	How ants, birds and bats affect crop yield along shade gradients in tropical cacao agroforestry. Journal of Applied Ecology, 2016, 53, 953-963.	1.9	69
130	Cultural homegarden management practices mediate arthropod communities in Indonesia. Journal of Insect Conservation, 2016, 20, 373-382.	0.8	9
131	Bird and bat predation services in tropical forests and agroforestry landscapes. Biological Reviews, 2016, 91, 1081-1101.	4.7	182
132	Perceptions of cultural ecosystem services from urban green. Ecosystem Services, 2016, 17, 33-39.	2.3	147
133	Corridors restore animal-mediated pollination in fragmented tropical forest landscapes. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152347.	1.2	72
134	How forest edge–center transitions in the herb layer interact with beech dominance versus tree diversity. Journal of Plant Ecology, 2016, 9, 498-507.	1.2	16
135	Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agriculture, Ecosystems and Environment, 2016, 221, 198-204.	2.5	393
136	Habitat management on multiple spatial scales can enhance bee pollination and crop yield in tropical homegardens. Agriculture, Ecosystems and Environment, 2016, 223, 144-151.	2.5	43
137	Bird Responses to Lowland Rainforest Conversion in Sumatran Smallholder Landscapes, Indonesia. PLoS ONE, 2016, 11, e0154876.	1.1	36
138	Avian species identity drives predation success in tropical cacao agroforestry. Journal of Applied Ecology, 2015, 52, 735-743.	1.9	74
139	EDITOR'S CHOICE: REVIEW: Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 2015, 52, 1436-1444.	1.9	136
140	Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species. PLoS ONE, 2015, 10, e0135928.	1.1	41
141	Biodiversity conservation across taxa and landscapes requires many small as well as single large habitat fragments. Oecologia, 2015, 179, 209-222.	0.9	79
142	Feeding damage to plants increases with plant size across 21 Brassicaceae species. Oecologia, 2015, 179, 455-466.	0.9	15
143	Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142620.	1.2	467
144	Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. Journal of Applied Ecology, 2015, 52, 505-513.	1.9	129

#	Article	IF	Citations
145	Landscape complexity is not a major trigger of species richness and food web structure of European cereal aphid parasitoids. BioControl, 2015, 60, 451-461.	0.9	19
146	Local and landscape management drive trait-mediated biodiversity of nine taxa on small grassland fragments. Diversity and Distributions, 2015, 21, 1204-1217.	1.9	82
147	Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications, 2015, 6, 7414.	5.8	656
148	Landscape simplification filters species traits and drives biotic homogenization. Nature Communications, 2015, 6, 8568.	5.8	399
149	Harnessing the biodiversity value of Central and Eastern European farmland. Diversity and Distributions, 2015, 21, 722-730.	1.9	172
150	Global effects of land use intensity on the impoverishment of insect herbivore assemblages. Biodiversity and Conservation, 2015, 24, 271-285.	1.2	12
151	Conserving Biodiversity Through Certification of Tropical Agroforestry Crops at Local and Landscape Scales. Conservation Letters, 2015, 8, 14-23.	2.8	126
152	Pollination mitigates cucumber yield gaps more than pesticide and fertilizer use in tropical smallholder gardens. Journal of Applied Ecology, 2015, 52, 261-269.	1.9	38
153	Interannual variation in land-use intensity enhances grassland multidiversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 308-313.	3.3	243
154	Interaction complexity matters: disentangling services and disservices of ant communities driving yield in tropical agroecosystems. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132144.	1.2	71
155	Enhancing crop shelf life with pollination. Agriculture and Food Security, 2014, 3, .	1.6	14
156	Species' traits influence ground beetle responses to farm and landscape level agricultural intensification in Europe. Journal of Insect Conservation, 2014, 18, 837-846.	0.8	31
157	Landscape configuration of crops and hedgerows drives local syrphid fly abundance. Journal of Applied Ecology, 2014, 51, 505-513.	1.9	90
158	Functional beetle diversity in managed grasslands: effects of region, landscape context and land use intensity. Landscape Ecology, 2014, 29, 529-540.	1.9	24
159	Bat pest control contributes to food security in Thailand. Biological Conservation, 2014, 171, 220-223.	1.9	102
160	<scp>BIOFRAG</scp> â€" a new database for analyzing <scp>BIO</scp> diversity responses to forest <scp>FRAG</scp> mentation. Ecology and Evolution, 2014, 4, 1524-1537.	0.8	29
161	Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biological Conservation, 2014, 172, 56-64.	1.9	97
162	Environmentally friendly management as an intermediate strategy between organic and conventional agriculture to support biodiversity. Biological Conservation, 2014, 178, 146-154.	1.9	38

#	Article	IF	Citations
163	Implications of agricultural transitions and urbanization for ecosystem services. Nature, 2014, 515, 50-57.	13.7	402
164	Bee pollination improves crop quality, shelf life and commercial value. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132440.	1.2	305
165	Community variability in aphid parasitoids versus predators in response to agricultural intensification. Insect Conservation and Diversity, 2014, 7, 103-112.	1.4	14
166	Mass-flowering crops enhance wild bee abundance. Oecologia, 2013, 172, 477-484.	0.9	179
167	Bats and birds increase crop yield in tropical agroforestry landscapes. Ecology Letters, 2013, 16, 1480-1487.	3.0	247
168	The impact of hedge-forest connectivity and microhabitat conditions on spider and carabid beetle assemblages in agricultural landscapes. Journal of Insect Conservation, 2013, 17, 1027-1038.	0.8	33
169	Longâ€term change of ant community structure in cacao agroforestry landscapes in <scp>I</scp> ndonesia. Insect Conservation and Diversity, 2013, 6, 328-338.	1.4	19
170	Grassland management for stem-boring insects: Abandoning small patches is better than reducing overall intensity. Agriculture, Ecosystems and Environment, 2013, 167, 38-42.	2.5	4
171	To close the yield-gap while saving biodiversity will require multiple locally relevant strategies. Agriculture, Ecosystems and Environment, 2013, 173, 20-27.	2.5	116
172	Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 2013, 339, 1608-1611.	6.0	1,767
173	Landscape composition, connectivity and fragment size drive effects of grassland fragmentation on insect communities. Journal of Applied Ecology, 2013, 50, 387-394.	1.9	118
174	Gene flow and genetic diversity in cultivated and wild cacao (<i>Theobroma cacao</i>) in Bolivia. American Journal of Botany, 2013, 100, 2271-2279.	0.8	22
175	Contrasting effects of massâ€flowering crops on bee pollination of hedge plants at different spatial and temporal scales. Ecological Applications, 2013, 23, 1938-1946.	1.8	100
176	Dissimilarity of Ant Communities Increases with Precipitation, but not Reduced Land-Use Intensity, in Indonesian Cacao Agroforestry. Diversity, 2013, 5, 26-38.	0.7	5
177	Organic Farming Favours Insect-Pollinated over Non-Insect Pollinated Forbs in Meadows and Wheat Fields. PLoS ONE, 2013, 8, e54818.	1.1	30
178	Landscape moderation of biodiversity patterns and processes ―eight hypotheses. Biological Reviews, 2012, 87, 661-685.	4.7	1,443
179	Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 2012, 151, 53-59.	1.9	1,414
180	Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biological Conservation, 2012, 153, 101-107.	1.9	206

#	Article	IF	CITATIONS
181	Averting biodiversity collapse in tropical forest protected areas. Nature, 2012, 489, 290-294.	13.7	909
182	Can Joint Carbon and Biodiversity Management in Tropical Agroforestry Landscapes Be Optimized?. PLoS ONE, 2012, 7, e47192.	1.1	44
183	Bioökonomie contra BiodiversitÃ♥. Biologie in Unserer Zeit, 2012, 42, 120-122.	0.3	0
184	Spillover of functionally important organisms between managed and natural habitats. Agriculture, Ecosystems and Environment, 2012, 146, 34-43.	2.5	413
185	Landscape simplification and altitude affect biodiversity, herbivory and Andean potato yield. Journal of Applied Ecology, 2012, 49, 513-522.	1.9	60
186	The $\hat{l}^2 \hat{a} \in \mathbf{d}$ iversity of arable weed communities on organic and conventional cereal farms in two contrasting regions. Applied Vegetation Science, 2012, 15, 571-579.	0.9	36
187	Landscape complexity differentially benefits generalized fourth, over specialized third, trophic level natural enemies. Ecography, 2012, 35, 97-104.	2.1	59
188	Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1894-1902.	1.2	460
189	Does habitat heterogeneity increase farmland biodiversity?. Frontiers in Ecology and the Environment, 2011, 9, 152-153.	1.9	47
190	The relationship between agricultural intensification and biological control: experimental tests across Europe., 2011, 21, 2187-2196.		157
191	Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds., 2011, 21, 1772-1781.		221
192	Landscape elements as potential barriers and corridors for bees, wasps and parasitoids. Biological Conservation, 2011, 144, 1816-1825.	1.9	107
193	Conservation: Limits of Land Sparing. Science, 2011, 334, 593-593.	6.0	105
194	Experimental environmental change and mutualistic vs. antagonistic plant flower–visitor interactions. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 27-35.	1.1	38
195	Mixed effects of landscape complexity and farming practice on weed seed removal. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 297-303.	1.1	41
196	Does conservation on farmland contribute to halting the biodiversity decline?. Trends in Ecology and Evolution, 2011, 26, 474-481.	4.2	522
197	Spider web guilds in cacao agroforestry – comparing tree, plot and landscapeâ€scale management. Diversity and Distributions, 2011, 17, 748-756.	1.9	19
198	Enhancing rape pollen beetle parasitism within sown flower fields along a landscape complexity gradient. Agricultural and Forest Entomology, 2011, 13, 173-179.	0.7	29

#	Article	IF	Citations
199	Costâ€effectiveness of plant and animal biodiversity indicators in tropical forest and agroforest habitats. Journal of Applied Ecology, 2011, 48, 330-339.	1.9	41
200	Multifunctional shade-tree management in tropical agroforestry landscapes - a review. Journal of Applied Ecology, 2011, 48, 619-629.	1.9	527
201	Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. Journal of Applied Ecology, 2011, 48, 570-579.	1.9	205
202	Plant–flower visitor interaction webs: Temporal stability and pollinator specialization increases along an experimental plant diversity gradient. Basic and Applied Ecology, 2011, 12, 300-309.	1.2	65
203	Early succession arthropod community changes on experimental passion fruit plant patches along a land-use gradient in Ecuador. Agriculture, Ecosystems and Environment, 2011, 140, 14-19.	2.5	12
204	Set-aside management: How do succession, sowing patterns and landscape context affect biodiversity?. Agriculture, Ecosystems and Environment, 2011, 143, 37-44.	2.5	105
205	Does soil biota benefit from organic farming in complex vs. simple landscapes?. Agriculture, Ecosystems and Environment, 2011, 141, 210-214.	2.5	48
206	Crop–noncrop spillover: arable fields affect trophic interactions on wild plants in surrounding habitats. Oecologia, 2011, 166, 433-441.	0.9	31
207	Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2946-2953.	1.2	119
208	Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3444-3451.	1.2	199
209	Combining high biodiversity with high yields in tropical agroforests. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8311-8316.	3.3	339
210	Landscape composition influences farm management effects on farmland birds in winter: A pan-European approach. Agriculture, Ecosystems and Environment, 2010, 139, 571-577.	2.5	51
211	Natural enemy diversity reduces temporal variability in wasp but not bee parasitism. Oecologia, 2010, 162, 755-762.	0.9	26
212	Relative contribution of agroforestry, rainforest and openland to local and regional bee diversity. Biodiversity and Conservation, 2010, 19, 2189-2200.	1.2	53
213	Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology, 2010, 11, 97-105.	1.2	1,039
214	Spatial distribution of flower vs. honeydew resources in cereal fields may affect aphid parasitism. Biological Control, 2010, 53, 204-213.	1.4	40
215	Effects of Landâ€Use Change on Community Composition of Tropical Amphibians and Reptiles in Sulawesi, Indonesia. Conservation Biology, 2010, 24, 795-802.	2.4	73
216	Effects of an experimental drought on the functioning of a cacao agroforestry system, Sulawesi, Indonesia. Global Change Biology, 2010, 16, 1515-1530.	4.2	92

#	Article	IF	CITATIONS
217	How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids?. Journal of Animal Ecology, 2010, 79, 491-500.	1.3	231
218	Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 2010, 468, 553-556.	13.7	786
219	Diversity and body size of dung beetles attracted to different dung types along a tropical land-use gradient in Sulawesi, Indonesia. Journal of Tropical Ecology, 2010, 26, 53-65.	0.5	32
220	Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biological Conservation, 2010, 143, 2375-2384.	1.9	286
221	Landscape-moderated importance of hedges in conserving farmland bird diversity of organic vs. conventional croplands and grasslands. Biological Conservation, 2010, 143, 2020-2027.	1.9	148
222	Experimental evidence for stronger cacao yield limitation by pollination than by plant resources. Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12, 183-191.	1.1	85
223	Biodiversity patterns and trophic interactions in human-dominated tropical landscapes in Sulawesi (Indonesia): plants, arthropods and vertebrates. Environmental Science and Engineering, 2010, , 15-71.	0.1	10
224	Biological Rape Pest Control in Spatio-Temporally Changing Landscapes. , 2010, , 273-284.		8
225	Tropical rainforests and agroforests under global change: Ecological and socio-economic valuations $\hat{a} \in "$ an introduction. Environmental Science and Engineering, 2010, , 1-11.	0.1	0
226	Grass strip corridors in agricultural landscapes enhance nestâ€site colonization by solitary wasps. Ecological Applications, 2009, 19, 123-132.	1.8	77
227	Spatiotemporal density patterns of the pest predator Rhynchium haemorrhoidale (F.) along a land-use gradient in cacao agroforestry systems. Agroforestry Systems, 2009, 76, 163-171.	0.9	5
228	Conservation value of cacao agroforestry for amphibians and reptiles in Southâ€East Asia: combining correlative models with followâ€up field experiments. Journal of Applied Ecology, 2009, 46, 823-832.	1.9	45
229	Increasing syrphid fly diversity and density in sown flower strips within simple vs. complex landscapes. Journal of Applied Ecology, 2009, 46, 1106-1114.	1.9	180
230	Cacao boom and bust: sustainability of agroforests and opportunities for biodiversity conservation. Conservation Letters, 2009, 2, 197-205.	2.8	161
231	Local and landscape factors determine functional bird diversity in Indonesian cacao agroforestry. Biological Conservation, 2009, 142, 1032-1041.	1.9	130
232	Six years of habitat modification in a tropical rainforest margin of Indonesia do not affect bird diversity but endemic forest species. Biological Conservation, 2009, 142, 2665-2671.	1.9	50
233	Alpha and beta diversity of plants and animals along a tropical landâ€use gradient. Ecological Applications, 2009, 19, 2142-2156.	1.8	115
234	Spatial aggregation facilitates coexistence and diversity of wild plant species in field margins. Perspectives in Plant Ecology, Evolution and Systematics, 2009, 11, 127-135.	1.1	34

#	Article	IF	CITATIONS
235	Contrasting responses of arable spiders to the landscape matrix at different spatial scales. Journal of Biogeography, 2008, 35, 157-166.	1.4	103
236	The invasive Yellow Crazy Ant and the decline of forest ant diversity in Indonesian cacao agroforests. Biological Invasions, 2008, 10, 1399-1409.	1.2	67
237	The contribution of non-managed social bees to coffee production: new economic insights based on farm-scale yield data. Agroforestry Systems, 2008, 73, 109-114.	0.9	48
238	Environmentally mediated coffee pest densities in relation to agroforestry management, using hierarchical partitioning analyses. Agriculture, Ecosystems and Environment, 2008, 125, 120-126.	2.5	52
239	Interannual landscape changes influence plant–herbivore–parasitoid interactions. Agriculture, Ecosystems and Environment, 2008, 125, 266-268.	2.5	78
240	Diversity of cereal aphid parasitoids in simple and complex landscapes. Agriculture, Ecosystems and Environment, 2008, 126, 289-292.	2.5	69
241	How does plant richness affect pollinator richness and temporal stability of flower visits?. Oikos, 2008, 117, 1808-1815.	1.2	335
242	LANDSCAPE CONSTRAINTS ON FUNCTIONAL DIVERSITY OF BIRDS AND INSECTS IN TROPICAL AGROECOSYSTEMS. Ecology, 2008, 89, 944-951.	1.5	310
243	Agricultural landscapes with organic crops support higher pollinator diversity. Oikos, 2008, 117, 354-361.	1.2	223
244	Reprint of "Conservation biological control and enemy diversity on a landscape scale―[Biol. Control 43 (2007) 294–309]. Biological Control, 2008, 45, 238-253.	1.4	64
245	Functional group diversity of bee pollinators increases crop yield. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2283-2291.	1.2	534
246	Resource Heterogeneity Moderates the Biodiversity-Function Relationship in Real World Ecosystems. PLoS Biology, 2008, 6, e122.	2.6	210
247	The value of differently managed cacao plantations for forest bird conservation in Sulawesi, Indonesia. Bird Conservation International, 2008, 18, 349.	0.7	35
248	Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4973-4978.	3.3	396
249	Author Sequence and Credit for Contributions in Multiauthored Publications. PLoS Biology, 2007, 5, e18.	2.6	413
250	CAVEATS TO QUANTIFYING ECOSYSTEM SERVICES: FRUIT ABORTION BLURS BENEFITS FROM CROP POLLINATION. Ecological Applications, 2007, 17, 1841-1849.	1.8	126
251	Tree recovery and seed dispersal by birds: Comparing forest, agroforestry and abandoned agroforestry in coastal Ecuador. Perspectives in Plant Ecology, Evolution and Systematics, 2007, 8, 131-140.	1.1	39
252	Conservation biological control and enemy diversity on a landscape scale. Biological Control, 2007, 43, 294-309.	1.4	531

#	Article	IF	CITATIONS
253	Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 303-313.	1.2	4,383
254	The stability of tropical rainforest margins, linking ecological, economic and social constraints of land use and conservation $\hat{a}\in$ " an introduction., 2007, , 1-8.		3
255	Habitat modification alters the structure of tropical host–parasitoid food webs. Nature, 2007, 445, 202-205.	13.7	775
256	Contrasting effects of natural habitat loss on generalist and specialist aphid natural enemies. Oikos, 2007, 116, 1353-1362.	1.2	112
257	Alpha and beta diversity of arthropods and plants in organically and conventionally managed wheat fields. Journal of Applied Ecology, 2007, 44, 804-812.	1.9	150
258	Insect pollinated plants benefit from organic farming. Agriculture, Ecosystems and Environment, 2007, 118, 43-48.	2.5	127
259	Shade tree management affects fruit abortion, insect pests and pathogens of cacao. Agriculture, Ecosystems and Environment, 2007, 120, 201-205.	2.5	86
260	The contribution of cacao agroforests to the conservation of lower canopy ant and beetle diversity in Indonesia. Biodiversity and Conservation, 2007, 16, 2429-2444.	1.2	79
261	Abandonement of coffee agroforests increases insect abundance and diversity. Agroforestry Systems, 2007, 69, 175-182.	0.9	22
262	Insect diversity responses to forest conversion and agroforestry management., 2007,, 277-294.		11
263	DIVERSITY, ECOSYSTEM FUNCTION, AND STABILITY OF PARASITOID–HOST INTERACTIONS ACROSS A TROPICAL HABITAT GRADIENT. Ecology, 2006, 87, 3047-3057.	1.5	139
264	BETA DIVERSITY AT DIFFERENT SPATIAL SCALES: PLANT COMMUNITIES IN ORGANIC AND CONVENTIONAL AGRICULTURE. , 2006, 16, 2011-2021.		256
265	Economic Evaluation of Pollination Services Comparing Coffee Landscapes in Ecuador and Indonesia. Ecology and Society, 2006, 11, .	1.0	94
266	Contrasting responses of bee communities to coffee flowering at different spatial scales. Oikos, 2006, 112, 594-601.	1.2	88
267	Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecology Letters, 2006, 9, 603-614.	3.0	518
268	Rain forest promotes trophic interactions and diversity of trap-nesting Hymenoptera in adjacent agroforestry. Journal of Animal Ecology, 2006, 75, 315-323.	1.3	131
269	Diversity of flower-visiting bees in cereal fields: effects of farming system, landscape composition and regional context. Journal of Applied Ecology, 2006, 44, 41-49.	1.9	381
270	Spatial scale of observation affects alpha, beta and gamma diversity of cavity-nesting bees and wasps across a tropical land-use gradient. Journal of Biogeography, 2006, 33, 1295-1304.	1.4	90

#	Article	IF	Citations
271	Bumblebees experience landscapes at different spatial scales: possible implications for coexistence. Oecologia, 2006, 149, 289-300.	0.9	205
272	Foraging trip duration of bumblebees in relation to landscape-wide resource availability. Ecological Entomology, 2006, 31, 389-394.	1.1	100
273	The role of perennial habitats for Central European farmland spiders. Agriculture, Ecosystems and Environment, 2005, 105, 235-242.	2.5	139
274	Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecology Letters, 2005, 8, 857-874.	3.0	3,245
275	Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. Journal of Applied Ecology, 2005, 42, 281-287.	1.9	324
276	The effects of landscape complexity on arable weed species diversity in organic and conventional farming. Journal of Applied Ecology, 2005, 42, 873-882.	1.9	342
277	Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. Journal of Biogeography, 2005, 32, 467-473.	1.4	134
278	Spider diversity in cereal fields: comparing factors at local, landscape and regional scales. Journal of Biogeography, 2005, 32, 2007-2014.	1.4	183
279	Effects of decomposers and herbivores on plant performance and aboveground plant-insect interactions. Oikos, 2005, 108, 503-510.	1.2	100
280	Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly. Ecography, 2005, 28, 465-474.	2.1	67
281	Changes of dung beetle communities from rainforests towards agroforestry systems and annual cultures in Sulawesi (Indonesia). Biodiversity and Conservation, 2005, 14, 863-877.	1.2	63
282	The Contribution of Tropical Secondary Forest Fragments to the Conservation of Fruit-feeding Butterflies: Effects of Isolation and Age. Biodiversity and Conservation, 2005, 14, 3577-3592.	1.2	53
283	The landscape context of cereal aphid–parasitoid interactions. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 203-210.	1.2	302
284	Reed cutting affects arthropod communities, potentially reducing food for passerine birds. Biological Conservation, 2005, 121, 157-166.	1.9	74
285	Local diversity of arable weeds increases with landscape complexity. Perspectives in Plant Ecology, Evolution and Systematics, 2005, 7, 85-93.	1.1	155
286	SPATIOTEMPORAL VARIATION IN THE DIVERSITY OF HYMENOPTERA ACROSS A TROPICAL HABITAT GRADIENT. Ecology, 2005, 86, 3296-3302.	1.5	230
287	Aphid suppression by natural enemies in mulched cereals. Entomologia Experimentalis Et Applicata, 2004, 113, 87-93.	0.7	103
288	Foraging trip duration and density of megachilid bees, eumenid wasps and pompilid wasps in tropical agroforestry systems. Journal of Animal Ecology, 2004, 73, 517-525.	1.3	78

#	Article	IF	CITATIONS
289	Trophic interactions in changing landscapes: responses of soil food webs. Basic and Applied Ecology, 2004, 5, 495-503.	1.2	100
290	Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodiversity and Conservation, 2004, 13, 1427-1439.	1.2	189
291	BIODIVERSITY INDICATOR GROUPS OF TROPICAL LAND-USE SYSTEMS: COMPARING PLANTS, BIRDS, AND INSECTS. , 2004, 14, 1321-1333.		381
292	PLANT-INSECTINTERACTIONS INFRAGMENTEDLANDSCAPES. Annual Review of Entomology, 2004, 49, 405-430.	5.7	460
293	Local species immigration, extinction, and turnover of butterflies in relation to habitat area and habitat isolation. Oecologia, 2003, 137, 591-602.	0.9	107
294	Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos, 2003, 101, 18-25.	1.2	404
295	How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies?. Journal of Biogeography, 2003, 30, 889-900.	1.4	257
296	Mass flowering crops enhance pollinator densities at a landscape scale. Ecology Letters, 2003, 6, 961-965.	3.0	569
297	Relative importance of predators and parasitoids for cereal aphid control. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1905-1909.	1.2	272
298	Fruit set of highland coffee increases with the diversity of pollinating bees. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 955-961.	1.2	618
299	SCALE-DEPENDENT EFFECTS OF LANDSCAPE CONTEXT ON THREE POLLINATOR GUILDS. Ecology, 2002, 83, 1421-1432.	1.5	928
300	Contrasting responses of plant and insect diversity to variation in grazing intensity. Biological Conservation, 2002, 106, 293-302.	1.9	297
301	CONTRIBUTION OF SMALL HABITAT FRAGMENTS TO CONSERVATION OF INSECT COMMUNITIES OF GRASSLAND–CROPLAND LANDSCAPES*. , 2002, 12, 354-363.		138
302	Multitrophic interactions in space: metacommunity dynamics in fragmented landscapes., 2002, , 124-147.		29
303	Tritrophic below- and above-ground interactions in succession. , 2002, , 197-222.		8
304	Insects as vectors of plant pathogens: mutualistic and antagonistic interactions. Oecologia, 2002, 133, 193-199.	0.9	95
305	Plant-insect communities and predator-prey ratios in field margin strips, adjacent crop fields, and fallows. Oecologia, 2002, 130, 315-324.	0.9	160
306	Foraging ranges of solitary bees. Journal of Animal Ecology, 2002, 71, 757-764.	1.3	803

#	Article	IF	CITATIONS
307	Effects of Land-Use Intensity in Tropical Agroforestry Systems on Coffee Flower-Visiting and Trap-Nesting Bees and Wasps. Conservation Biology, 2002, 16, 1003-1014.	2.4	268
308	Characteristics of insect populations on habitat fragments: A mini review. Ecological Research, 2002, 17, 229-239.	0.7	363
309	Predator–prey ratios on cocoa along a land-use gradient in Indonesia. Biodiversity and Conservation, 2002, 11, 683-693.	1.2	90
310	SCALE-DEPENDENT EFFECTS OF LANDSCAPE CONTEXT ON THREE POLLINATOR GUILDS. , 2002, 83, 1421.		1
311	Pollination, seed set and seed predation on a landscape scale. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1685-1690.	1.2	187
312	Parasitoids of grass-feeding chalcid wasps: a comparison of German and British communities. Oecologia, 2001, 129, 445-451.	0.9	12
313	Succession of bee communities on fallows. Ecography, 2001, 24, 83-93.	2.1	148
314	Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochemical Systematics and Ecology, 2001, 29, 1025-1047.	0.6	172
315	Defoliation of alders (Alnus glutinosa) affects herbivory by leaf beetles on undamaged neighbours. Oecologia, 2000, 125, 504-511.	0.9	162
316	Effects of Habitat Fragmentation on Plant-Insect Communities. , 2000, , 53-70.		43
317	Fifteen Parasitoid Populations in the Agricultural Landscape. , 2000, , 235-253.		36
318	Effects of habitat isolation on pollinator communities and seed set. Oecologia, 1999, 121, 432-440.	0.9	533
319	Insects on common reed (Phragmites australis): community structure and the impact of herbivory on shoot growth. Aquatic Botany, 1999, 64, 399-410.	0.8	64
320	Landscape Structure and Biological Control in Agroecosystems. Science, 1999, 285, 893-895.	6.0	702
321	Habitat fragmentation and biological control. , 1999, , 190-205.		84
322	Does fragmentation of Urtica habitats affect phytophagous and predatory insects differentially?. Oecologia, 1998, 116, 419-425.	0.9	161
323	Bioindication using trapâ€nesting bees and wasps and their natural enemies: community structure and interactions. Journal of Applied Ecology, 1998, 35, 708-719.	1.9	326
324	Early succession of butterfly and plant communities on set-aside fields. Oecologia, 1997, 109, 294-302.	0.9	145

TEJA TSCHARNTKE

#	Article	IF	CITATIONS
325	Fragmentation of Phragmites Habitats, Minimum Viable Population Size, Habitat Suitability, and Local Extinction of Moths, Midges, Flies, Aphids, and Birds. Conservation Biology, 1992, 6, 530-536.	2.4	150
326	Coexistence, Tritrophic Interactions and Density Dependence in a Species-Rich Parasitoid Community. Journal of Animal Ecology, 1992, 61, 59.	1.3	39
327	Changes in Shoot Growth of Phragmites Australis Caused by the Gall Maker Giraudiella Inclusa (Diptera: Cecidomyiidae). Oikos, 1989, 54, 370.	1.2	22
328	Attack by a Stem-Boring Moth Increases Susceptibility of Phragmites Australis to Gall-Making by a Midge: Mechanisms and Effects on Midge Population Dynamics. Oikos, 1989, 55, 93.	1.2	38
329	Variability of the grass Phragmites australis in relation to the behaviour and mortality of the gall-inducing midge Giraudiella inclusa (Diptera, Cecidomyiidae). Oecologia, 1988, 76, 504-512.	0.9	35