
Kangli Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4541226/publications.pdf Version: 2024-02-01

KANCH WANC

#	Article	IF	CITATIONS
1	3D Spatial Combination of CN Vacancyâ€Mediated NiFeâ€PBA with Nâ€Doped Carbon Nanofibers Network Toward Freeâ€Standing Bifunctional Electrode for Zn–Air Batteries. Advanced Science, 2022, 9, e2105925.	11.2	40
2	CF ₄ Plasmaâ€Generated LiFâ€Li ₂ C ₂ Artificial Layers for Dendriteâ€Free Lithiumâ€Metal Anodes. Advanced Science, 2022, 9, .	11.2	37
3	A sodium liquid metal battery based on the multi-cationic electrolyte for grid energy storage. Energy Storage Materials, 2022, 50, 572-579.	18.0	35
4	State of Charge Estimation for Liquid Metal Batteries with Gaussian Process Regression Framework. , 2022, , .		2
5	Tuning microstructures of hard carbon for high capacity and rate sodium storage. Chemical Engineering Journal, 2021, 417, 128104.	12.7	30
6	Low-valence titanium oxides synthesized by electric field control as novel conversion anodes for high performance sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 10458-10465.	10.3	8
7	Ultrahigh Phosphorus Doping of Carbon for Highâ€Rate Sodium Ion Batteries Anode. Advanced Energy Materials, 2021, 11, 2003911.	19.5	91
8	Crystal water assisting MoS2 nanoflowers for reversible zinc storage. Journal of Alloys and Compounds, 2021, 872, 159599.	5.5	18
9	Utilizing in situ alloying reaction to achieve the self-healing, high energy density and cost-effective Li Sb liquid metal battery. Journal of Power Sources, 2021, 514, 230578.	7.8	26
10	An <i>in situ</i> self-assembled 3D zincophilic heterogeneous metal layer on a zinc metal surface for dendrite-free aqueous zinc-ion batteries. Sustainable Energy and Fuels, 2021, 5, 5843-5850.	4.9	10
11	A high energy efficiency and long life aqueous Zn–I ₂ battery. Journal of Materials Chemistry A, 2020, 8, 3785-3794.	10.3	82
12	Enhanced Na ⁺ pseudocapacitance in a P, S co-doped carbon anode arising from the surface modification by sulfur and phosphorus with C–S–P coupling. Journal of Materials Chemistry A, 2020, 8, 422-432.	10.3	33
13	A Low Cost Aqueous Zn–S Battery Realizing Ultrahigh Energy Density. Advanced Science, 2020, 7, 2000761.	11.2	86
14	Electrochemical Properties and Kinetics of Asymmetric Sodium Benzeneâ€1,2,4â€tricarboxylate as an Anode Material for Sodiumâ€Organic Batteries. ChemElectroChem, 2020, 7, 3517-3521.	3.4	6
15	Designing a slope-dominated hybrid nanostructure hard carbon anode for high-safety and high-capacity Na-ion batteries. Journal of Materials Chemistry A, 2020, 8, 22613-22619.	10.3	15
16	Controllable electrolytic formation of Ti ₂ O as an efficient sulfur host in lithium–sulfur (Li–S) batteries. Journal of Materials Chemistry A, 2020, 8, 11224-11232.	10.3	32
17	An <i>in Situ</i> Prepared Covalent Sulfur–Carbon Composite Electrode for High-Performance Room-Temperature Sodium–Sulfur Batteries. ACS Energy Letters, 2020, 5, 1307-1315.	17.4	46
18	Investigation of the mechanism of metal–organic frameworks preventing polysulfide shuttling from the perspective of composition and structure. Journal of Materials Chemistry A, 2020, 8, 6661-6669.	10.3	28

Kangli Wang

#	Article	IF	CITATIONS
19	Structural and electrochemical characterization of LiMn2O4 and Li1.05Mn1.97Nb0.03O4 with excellent high-temperature cycling stability synthesized by a simple route. Journal of Applied Electrochemistry, 2020, 50, 451-462.	2.9	3
20	Tailoring 2D Heteroatomâ€Doped Carbon Nanosheets with Dominated Pseudocapacitive Behaviors Enabling Fast and Highâ€Performance Sodium Storage. Advanced Functional Materials, 2020, 30, 1909907.	14.9	93
21	Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries. Energy Storage Materials, 2020, 27, 43-50.	18.0	165
22	Highâ€Performance Manganese Hexacyanoferrate with Cubic Structure as Superior Cathode Material for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1908754.	14.9	126
23	The insight into promoting sodium storage mechanism of α-CrPO4-type NaV3(PO4)3 anode material for sodium-ion batteries. Journal of Power Sources, 2020, 463, 228194.	7.8	4
24	Facile Tailoring of Multidimensional Nanostructured Sb for Sodium Storage Applications. ACS Nano, 2019, 13, 9533-9540.	14.6	62
25	Building High Performance Li-S Batteries by Compositing Nanosized Sulfur and Conductive Adsorbent within MWCNTs. Journal of the Electrochemical Society, 2019, 166, A3401-A3408.	2.9	4
26	An Ultrastable Presodiated Titanium Disulfide Anode for Aqueous "Rocking hair―Zinc Ion Battery. Advanced Energy Materials, 2019, 9, 1900993.	19.5	178
27	Experimental design and theoretical calculation for sulfur-doped carbon nanofibers as a high performance sodium-ion battery anode. Journal of Materials Chemistry A, 2019, 7, 10239-10245.	10.3	91
28	Selenium as Extra Binding Site for Sulfur Species in Sulfurized Polyacrylonitrile Cathodes for High Capacity Lithiumâ€ s ulfur Batteries. ChemElectroChem, 2019, 6, 1365-1370.	3.4	22
29	Thermal Modulation of MOF and Its Application in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 46792-46799.	8.0	21
30	Lithium Sulfonate/Carboxylate-Anchored Polyvinyl Alcohol Separators for Lithium Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 18310-18315.	8.0	32
31	Controllable Electrochemical Synthesis of Copper Sulfides as Sodium-Ion Battery Anodes with Superior Rate Capability and Ultralong Cycle Life. ACS Applied Materials & Interfaces, 2018, 10, 8016-8025.	8.0	73
32	A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Materials, 2018, 15, 14-21.	18.0	402
33	Nano-embedded microstructured FeS ₂ @C as a high capacity and cycling-stable Na-storage anode in an optimized ether-based electrolyte. Journal of Materials Chemistry A, 2018, 6, 24425-24432.	10.3	42
34	TiS ₂ as an Advanced Conversion Electrode for Sodiumâ€Ion Batteries with Ultraâ€High Capacity and Longâ€Cycle Life. Advanced Science, 2018, 5, 1801021.	11.2	101
35	Highly conjugated poly(<i>N</i> -heteroacene) nanofibers for reversible Na storage with ultra-high capacity and a long cycle life. Journal of Materials Chemistry A, 2018, 6, 18592-18598.	10.3	26
36	Selfâ€Polymerized Disordered Carbon Enabling High Sodium Storage Performance through Expanded Interlayer Spacing by Bound Sulfur Atoms. ChemElectroChem, 2018, 5, 3206-3212.	3.4	5

Kangli Wang

#	Article	IF	CITATIONS
37	Advanced Low-Cost, High-Voltage, Long-Life Aqueous Hybrid Sodium/Zinc Batteries Enabled by a Dendrite-Free Zinc Anode and Concentrated Electrolyte. ACS Applied Materials & Interfaces, 2018, 10, 22059-22066.	8.0	226
38	Glycol Derived Carbon- TiO2 as Low Cost and High Performance Anode Material for Sodium-Ion Batteries. Scientific Reports, 2017, 7, 43895.	3.3	42
39	Nickel sulfide nanospheres anchored on reduced graphene oxide in situ doped with sulfur as a high performance anode for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 9322-9328.	10.3	78
40	Na ₃ V ₂ (PO ₄) ₃ /C synthesized by a facile solid-phase method assisted with agarose as a high-performance cathode for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 10261-10268.	10.3	74
41	Electrospinning synthesis of Co ₃ O ₄ @C nanofibers as a high-performance anode for sodium ion batteries. RSC Advances, 2017, 7, 23122-23126.	3.6	22
42	A two-dimensional hybrid of SbO _x nanoplates encapsulated by carbon flakes as a high performance sodium storage anode. Journal of Materials Chemistry A, 2017, 5, 1160-1167.	10.3	47
43	Phosphorus-doped activated carbon as a promising additive for high performance lead carbon batteries. RSC Advances, 2017, 7, 4174-4178.	3.6	33
44	MoS2@rGO Nanoflakes as High Performance Anode Materials in Sodium Ion Batteries. Scientific Reports, 2017, 7, 7963.	3.3	53
45	Rational design of yolk–shell silicon dioxide@hollow carbon spheres as advanced Li–S cathode hosts. Nanoscale, 2017, 9, 14881-14887.	5.6	38
46	Poly(vinylidene fluoride)-based hybrid gel polymer electrolytes for additive-free lithium sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 17889-17895.	10.3	91
47	Battery management system for Liâ€ion battery. Journal of Engineering, 2017, 2017, 1437-1440.	1.1	21
48	Accuracy improvement of remaining capacity estimation for energy storage batteries. Journal of Engineering, 2017, 2017, 1833-1837.	1.1	0
49	Liquid Metal Electrodes for Energy Storage Batteries. Advanced Energy Materials, 2016, 6, 1600483.	19.5	139
50	Layered SnS2 cross-linked by carbon nanotubes as a high performance anode for sodium ion batteries. RSC Advances, 2016, 6, 35197-35202.	3.6	36
51	High Performance Liquid Metal Battery with Environmentally Friendly Antimony–Tin Positive Electrode. ACS Applied Materials & Interfaces, 2016, 8, 12830-12835.	8.0	92
52	Facile synthesis of an Fe ₃ O ₄ /FeO/Fe/C composite as a high-performance anode for lithium-ion batteries. RSC Advances, 2016, 6, 89715-89720.	3.6	20
53	A polyimide–MWCNTs composite as high performance anode for aqueous Na-ion batteries. RSC Advances, 2016, 6, 53319-53323.	3.6	41
54	Controllable construction of 3D-skeleton-carbon coated Na 3 V 2 (PO 4) 3 for high-performance sodium ion battery cathode. Nano Energy, 2016, 20, 11-19.	16.0	128

#	Article	IF	CITATIONS
55	Molten salt electrochemical synthesis of sodium titanates as high performance anode materials for sodium ion batteries. Journal of Materials Chemistry A, 2015, 3, 16495-16500.	10.3	30
56	A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy and Environmental Science, 2015, 8, 2916-2921.	30.8	535