Lijie Zhai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4540817/publications.pdf

Version: 2024-02-01

62	1,835	18	34
papers	citations	h-index	g-index
62	62	62	3302 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	IDO1 in cancer: a Gemini of immune checkpoints. Cellular and Molecular Immunology, 2018, 15, 447-457.	10.5	266
2	Molecular Pathways: Targeting IDO1 and Other Tryptophan Dioxygenases for Cancer Immunotherapy. Clinical Cancer Research, 2015, 21, 5427-5433.	7.0	254
3	Metabolically Activated Adipose Tissue Macrophages Perform Detrimental and Beneficial Functions during Diet-Induced Obesity. Cell Reports, 2017, 20, 3149-3161.	6.4	201
4	IDO1 Inhibition Synergizes with Radiation and PD-1 Blockade to Durably Increase Survival Against Advanced Glioblastoma. Clinical Cancer Research, 2018, 24, 2559-2573.	7.0	147
5	Infiltrating T Cells Increase IDO1 Expression in Glioblastoma and Contribute to Decreased Patient Survival. Clinical Cancer Research, 2017, 23, 6650-6660.	7.0	141
6	Immunosuppressive IDO in Cancer: Mechanisms of Action, Animal Models, and Targeting Strategies. Frontiers in Immunology, 2020, $11,1185.$	4.8	131
7	Hepatitis E virus genotyping based on full-length genome and partial genomic regions. Virus Research, 2006, 120, 57-69.	2.2	102
8	The Coincidence Between Increasing Age, Immunosuppression, and the Incidence of Patients With Glioblastoma. Frontiers in Pharmacology, 2019, 10, 200.	3.5	82
9	The role of IDO in brain tumor immunotherapy. Journal of Neuro-Oncology, 2015, 123, 395-403.	2.9	75
10	The kynurenine to tryptophan ratio as a prognostic tool for glioblastoma patients enrolling in immunotherapy. Journal of Clinical Neuroscience, 2015, 22, 1964-1968.	1.5	61
11	Advanced Age Increases Immunosuppression in the Brain and Decreases Immunotherapeutic Efficacy in Subjects with Glioblastoma. Clinical Cancer Research, 2020, 26, 5232-5245.	7.0	52
12	Tumor Cell IDO Enhances Immune Suppression and Decreases Survival Independent of Tryptophan Metabolism in Glioblastoma. Clinical Cancer Research, 2021, 27, 6514-6528.	7.0	48
13	Non-tumor cell IDO1 predominantly contributes to enzyme activity and response to CTLA-4/PD-L1 inhibition in mouse glioblastoma. Brain, Behavior, and Immunity, 2017, 62, 24-29.	4.1	46
14	Glioblastoma as an age-related neurological disorder in adults. Neuro-Oncology Advances, 2021, 3, vdab125.	0.7	30
15	An RNA Aptamer-Based Microcantilever Sensor To Detect the Inflammatory Marker, Mouse Lipocalin-2. Analytical Chemistry, 2012, 84, 8763-8770.	6.5	28
16	Advanced age negatively impacts survival in an experimental brain tumor model. Neuroscience Letters, 2016, 630, 203-208.	2.1	25
17	The interplay among psychological distress, the immune system, and brain tumor patient outcomes. Current Opinion in Behavioral Sciences, 2019, 28, 44-50.	3.9	22
18	A retrospective survival analysis of Glioblastoma patients treated with selective serotonin reuptake inhibitors. Brain, Behavior, & Immunity - Health, 2020, 2, 100025.	2.5	22

#	Article	IF	CITATIONS
19	Lessons learned from rindopepimut treatment in patients with EGFRvIII-expressing glioblastoma. Translational Cancer Research, 2018, 7, S510-S513.	1.0	19
20	Indoleamine 2,3-dioxygenase 1 and overall survival of patients diagnosed with esophageal cancer. Oncotarget, 2018, 9, 23482-23493.	1.8	17
21	Improving vaccine efficacy against malignant glioma. Oncolmmunology, 2016, 5, e1196311.	4.6	16
22	Quantification of IDO1 enzyme activity in normal and malignant tissues. Methods in Enzymology, 2019, 629, 235-256.	1.0	13
23	Fusion of C3d molecule with neutralization epitope(s) of hepatitis E virus enhances antibody avidity maturation and neutralizing activity following DNA immunization. Virus Research, 2010, 151, 162-169.	2.2	7
24	Lessons learned from rindopepimut treatment in patients with EGFRvIII-expressing glioblastoma. Translational Cancer Research, 2018, 7, S510-S513.	1.0	6
25	Cell-directed aptamer therapeutic targeting for cancers including those within the central nervous system. Oncolmmunology, 2022, 11, 2062827.	4.6	6
26	The Kynurenine/Tryptophan Ratio and Glioblastoma Patients Treated with Hsppc-96 Vaccine. Immunotherapy (Los Angeles, Calif), 2016, 2, .	0.1	5
27	A systematic review of pharmacologic treatment efficacy for depression in older patients with cancer. Brain, Behavior, & Immunity - Health, 2022, 21, 100449.	2.5	3
28	IMMU-21. CHARACTERIZING IDO1 AND ITS THERAPEUTIC POTENTIAL IN PEDIATRIC CENTRAL NERVOUS SYSTEM TUMORS. Neuro-Oncology, 2017, 19, iv32-iv32.	1.2	2
29	IMMU-24. IMMUNOTHERAPEUTIC NANOTECHNOLOGY TARGETING IDO1 FOR PEDIATRIC DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2018, 20, i103-i103.	1.2	2
30	IMMU-01. NOVEL RNA-TARGETING STRATEGY FOR TREATING T CELL-DRIVEN IMMUNOSUPPRESSION IN HUMAN DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2019, 21, ii92-ii93.	1.2	2
31	IMST-39. IDO1 IS PROGNOSTIC FOR GLIOBLASTOMA PATIENT SURVIVAL AND CENTRALLY CORRELATES WITH POTENTLY IMMUNOSUPPRESSIVE MEDIATORS. Neuro-Oncology, 2016, 18, vi95-vi95.	1.2	1
32	IMMU-35. TARGETING IDO1 IN HUMAN PEDIATRIC BRAIN CANCER. Neuro-Oncology, 2017, 19, vi120-vi120.	1.2	1
33	Commentary: preclinical efficacy of immune-checkpoint monotherapy does not recapitulate corresponding biomarkers-based clinical predictions in glioblastoma by Garg et al. (2017). Oncolmmunology, 2019, 8, 1548242.	4.6	1
34	Indoleamine 2,3-dioxygenase (IDO1), PD-L1, and overall survival (OS) of patients diagnosed with esophageal cancer Journal of Clinical Oncology, 2018, 36, 50-50.	1.6	1
35	IMPS-43IDO1 DOES NOT FUNCTION AS A TRYPTOPHAN CATABOLIC ENZYME IN MALIGNANT GLIOMA. Neuro-Oncology, 2015, 17, v122.3-v122.	1.2	O
36	IMST-35. IDO1 AND TARGETED IMMUNOTHERAPY IN AÂMOUSE GLIOBLASTOMA MODEL. Neuro-Oncology, 2016, 18, vi94-vi94.	1.2	0

#	Article	IF	CITATIONS
37	IMMU-46. AÂsiRNA APPROACH FOR TARGETING IMMUNOSUPPRESSIVE IDO1 IN PEDIATRIC DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2017, 19, vi122-vi123.	1.2	0
38	IMMU-22. COMBINATION IMMUNOTHERAPY WITH IDO1 INHIBITION ENHANCES TREATMENT EFFICACY IN MULTIPLE MODELS OF GLIOBLASTOMA MODEL. Neuro-Oncology, 2017, 19, vi117-vi117.	1.2	0
39	IMMU-66. IDO1 EXPRESSION STRATIFIES PATIENT SURVIVAL AND IS REGULATED BY TUMOR INFILTRATING T CELLS IN HUMAN GLIOBLASTOMA. Neuro-Oncology, 2017, 19, vi127-vi127.	1.2	O
40	PDTM-10. NOVEL RNA-TARGETING STRATEGY FOR TREATING T CELL-DRIVEN IMMUNOSUPPRESSION IN HUMAN DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2018, 20, vi205-vi206.	1.2	0
41	IMMU-34. A BALANCED TRYPTOPHAN DIET LEADS TO MAXIMAL IMMUNOTHERAPEUTIC EFFICACY IN GLIOBLASTOMA MODELS. Neuro-Oncology, 2018, 20, vi128-vi128.	1.2	0
42	IMMU-41. IDO1 INCREASES Treg RECRUITMENT INDEPENDENT OF TRYPTOPHAN METABOLISM IN A MODEL OF GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi130-vi130.	1.2	0
43	HOUT-10. SELECTIVE SEROTONIN REUPTAKE INHIBITOR (SSRI) TREATMENT IS ASSOCIATED WITH IMPROVED SURVIVAL AMONG ELDERLY PATIENTS DIAGNOSED WITH GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi115-vi115.	1.2	0
44	IMMU-46. GLIOBLASTOMA PATIENT DIAGNOSES AND IMMUNOSUPPRESSION ARE MAXIMAL DURING OLD AGE: A RANDOM COINCIDENCE, OR CAUSE AND EFFECT?. Neuro-Oncology, 2018, 20, vi131-vi131.	1.2	0
45	IMMU-35. PSYCHOSOCIAL STRESS NEGATIVELY IMPACTS IMMUNOTHERAPY IN IMMUNOCOMPETENT MODELS OF GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi128-vi129.	1.2	0
46	IMMU-10. RADIOTHERAPY AND PD-1 BLOCKADE INCREASES TRYPTOPHAN METABOLISM IN BRAIN TUMOR-DRAINING SECONDARY LYMPHOID ORGANS. Neuro-Oncology, 2018, 20, vi123-vi123.	1.2	0
47	CBMT-34. MODULATING DIETARY TRYPTOPHAN OR GUT MICROBIOTA LEVELS DOES NOT IMPROVE THE EFFICACY OF COMBINED TREATMENT WITH RADIATION, ANTI-PD-1 mAb, AND AN IDO1 ENZYME INHIBITOR IN A MODEL OF GLIOBLASTOMA. Neuro-Oncology, 2019, 21, vi40-vi40.	1.2	0
48	IMMU-22. TARGETING NON-CANONICAL FUNCTION OF IDO1 IN GLIOBLASTOMA IMMUNOTHERAPY. Neuro-Oncology, 2019, 21, vi123-vi123.	1.2	0
49	IMMU-20. ADVANCED AGING INCREASES IMMUNOSUPPRESSIVE IDO1 LEVELS THAT ARE UNINHIBITED BY IDO1 ENZYME INHIBITOR TREATMENT IN MODELS OF GLIOBLASTOMA. Neuro-Oncology, 2019, 21, vi123-vi123.	1.2	O
50	HOUT-20. TIME-DEPENDENT ANALYSIS OF SELECTIVE SEROTONIN REUPTAKE INHIBITOR TREATMENT ON OVERALL SURVIVAL OF PATIENTS WITH GLIOBLASTOMA. Neuro-Oncology, 2019, 21, vi116-vi116.	1.2	0
51	IMMU-44. INHIBITING IMMUNOSUPPRESSIVE IDO1 IN ADULTS WITH MALIGNANT GLIOMA – A MOVING TARGET THAT CHANGES WITH TREATMENT, CELL OF ORIGIN, AND AGING. Neuro-Oncology, 2019, 21, vi128-vi128.	1.2	O
52	Indoleamine 2,3-dioxygenase 1 (IDO): A mediator of immunoresistance in adults with brain cancer treated with immunomodulatory therapy. , 2022, , 127-151.		0
53	Abstract A064: IDO1 expression stratifies glioblastoma patient survival and correlates with dominantly immunosuppressive pathways. , 2016, , .		O
54	Abstract B018: A novel IDO1 inhibitor combined with targeted immunotherapy durably increases survival in a mouse model of glioblastoma., 2016,,.		0

#	Article	IF	CITATIONS
55	Abstract A051: Characterization of IDO1 and TDO2 in pediatric central nervous system tumors., 2016,,.		O
56	Abstract LB-285: Non-enzyme IDO1 activity and its immunosuppressive effects in glioblastoma. , 2018, , .		0
57	Abstract 5612: Targeting the non-enzymatic function of IDO1 in glioblastoma immunotherapy. , 2020, , .		O
58	IMMU-40. IMPROVING OUTCOMES IN OLDER ADULTS WITH GLIOBLASTOMA BY REVERSING AGE-RELATED CHANGES OF THE CENTRAL NERVOUS SYSTEM. Neuro-Oncology, 2020, 22, ii113-ii113.	1.2	0
59	DDRE-09. DEVELOPING IDO-PROTACS TO IMPROVE IMMUNOTHERAPEUTIC EFFICACY IN PATIENTS WITH GLIOBLASTOMA. Neuro-Oncology, 2020, 22, ii63-ii63.	1.2	0
60	IMMU-32. NON-METABOLIC IDO ACTIVITY INCREASES COMPLEMENT FACTOR H LEVELS WHICH ENHANCES IMMUNOSUPPRESSION IN HUMAN GLIOBLASTOMA. Neuro-Oncology, 2020, 22, ii111-ii111.	1.2	0
61	TMOD-24. GENERATION AND CHARACTERIZATION OF A NOVEL TRANSGENIC IDO REPORTER MOUSE FOR IDO POSTTRANSLATIONAL MODIFICATION ANALYSIS IN SITU. Neuro-Oncology, 2020, 22, ii233-ii233.	1.2	0
62	Abstract 2341: Indoleamine 2,3 dioxegenase 1 (IDO1) and T-cell infiltration in esophageal cancer. , 2019, , .		0