Todd H Oakley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4539925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Different phylogenomic methods support monophyly of enigmatic â€~Mesozoa' (Dicyemida +) Tj ETQq1 1 0.7	784314 2.6	rgBŢ /Overloc
2	Selection, drift, and constraint in cypridinid luciferases and the diversification of bioluminescent signals in sea fireflies. Molecular Ecology, 2021, 30, 1864-1879.	3.9	14
3	Multiâ€level convergence of complex traits and the evolution of bioluminescence. Biological Reviews, 2021, 96, 673-691.	10.4	35
4	Light modulated cnidocyte discharge predates the origins of eyes in Cnidaria. Ecology and Evolution, 2021, 11, 3933-3940.	1.9	8
5	Laboratory culture of the California Sea Firefly Vargula tsujii (Ostracoda: Cypridinidae): Developing a model system for the evolution of marine bioluminescence. Scientific Reports, 2020, 10, 10443.	3.3	7
6	Phylogenetic position of Alternochelata lizardensis Kornicker, 1982 within Rutidermatidae (Ostracoda: Myodocopida), with an investigation into its green coloration. Journal of Crustacean Biology, 2019, 39, 559-566.	0.8	0
7	Light-induced stress as a primary evolutionary driver of eye origins. Integrative and Comparative Biology, 2019, 59, 739-750.	2.0	10
8	Symbiotic organs shaped by distinct modes of genome evolution in cephalopods. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3030-3035.	7.1	123
9	Phenotypic evolution shaped by current enzyme function in the bioluminescent courtship signals of sea fireflies. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182621.	2.6	10
10	Contextâ€dependent evolution of ostracod morphology along the ecogeographical gradient of ocean depth. Evolution; International Journal of Organic Evolution, 2019, 73, 1213-1225.	2.3	9
11	Evolving witnesses of changing environments: An introduction to the 18th International Symposium on Ostracoda. Journal of Crustacean Biology, 2019, 39, 199-201.	0.8	0
12	Bioluminescent Signals. , 2019, , 449-461.		3
13	Multimodal sensorimotor system in unicellular zoospores of a fungus. Journal of Experimental Biology, 2018, 221, .	1.7	13
14	Ecological Engineering Helps Maximize Function in Algal Oil Production. Applied and Environmental Microbiology, 2018, 84, .	3.1	6
15	Prolific Origination of Eyes in Cnidaria with Co-option of Non-visual Opsins. Current Biology, 2018, 28, 2413-2419.e4.	3.9	48
16	Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic Marine Revolution. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162818.	2.6	86
17	Ecological interactions and coexistence are predicted by gene expression similarity in freshwater green algae. Journal of Ecology, 2017, 105, 580-591.	4.0	25
18	The Genome Sizes of Ostracod Crustaceans Correlate with Body Size and Evolutionary History, but not Environment. Journal of Heredity, 2017, 108, 701-706.	2.4	17

#	Article	IF	CITATIONS
19	Furcation and fusion: The phylogenetics of evolutionary novelty. Developmental Biology, 2017, 431, 69-76.	2.0	24
20	Collecting and processing marine ostracods. Journal of Crustacean Biology, 2017, 37, 347-352.	0.8	11
21	The last common ancestor of most bilaterian animals possessed at least 9 opsins. Genome Biology and Evolution, 2016, 8, evw248.	2.5	92
22	High Rates of Species Accumulation in Animals with Bioluminescent Courtship Displays. Current Biology, 2016, 26, 1916-1921.	3.9	55
23	Common Ancestry Is a Poor Predictor of Competitive Traits in Freshwater Green Algae. PLoS ONE, 2015, 10, e0137085.	2.5	20
24	A Transcriptomic Analysis of Cave, Surface, and Hybrid Isopod Crustaceans of the Species Asellus aquaticus. PLoS ONE, 2015, 10, e0140484.	2.5	24
25	Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of <i>Octopus bimaculoides</i> . Journal of Experimental Biology, 2015, 218, 1513-1520.	1.7	90
26	Further reâ€analyses looking for effects of phylogenetic diversity on community biomass and stability. Functional Ecology, 2015, 29, 1607-1610.	3.6	13
27	Evolutionary relatedness does not predict competition and co-occurrence in natural or experimental communities of green algae. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20141745.	2.6	26
28	Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a reâ€examination of 16 grassland biodiversity studies. Functional Ecology, 2015, 29, 615-626.	3.6	124
29	How Complexity Originates: The Evolution of Animal Eyes. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 237-260.	8.3	44
30	The Dynamic Evolutionary History of Pancrustacean Eyes and Opsins. Integrative and Comparative Biology, 2015, 55, 830-842.	2.0	89
	<p>Two new sympatric species of Eusarsiella (Ostracoda:) Tj ETQq1 1</p>	0.784314	4 rgBT /Over
31	Sarsiellinae. Zootaxa, 2014, 3802, 444.	0.5	4
32	Mixibius parvus sp. nov. and Diphascon (Diphascon) ziliense sp. nov., two new species of Eutardigrada from Sicily . Zootaxa, 2014, 3802, 459.	0.5	8
33	Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms. BMC Bioinformatics, 2014, 15, 350.	2.6	62
34	The Comb Jelly Opsins and the Origins of Animal Phototransduction. Genome Biology and Evolution, 2014, 6, 1964-1971.	2.5	62
35	Opsins in Limulus eyes: Characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes. Journal of Experimental Biology, 2014, 218, 466-79.	1.7	12
36	Eye-specification genes in the bacterial light organ of the bobtail squid Euprymna scolopes, and their expression in response to symbiont cues. Mechanisms of Development, 2014, 131, 111-126.	1.7	25

#	Article	IF	CITATIONS
37	Evolutionary history and the strength of species interactions: testing the phylogenetic limiting similarity hypothesis. Ecology, 2014, 95, 1407-1417.	3.2	54
38	Predictable transcriptome evolution in the convergent and complex bioluminescent organs of squid. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4736-42.	7.1	77
39	The shell-eyes of the chiton <i>Acanthopleura granulata</i> (Mollusca, Polyplacophora) use pheomelanin as a screening pigment. Journal of Natural History, 2014, 48, 2899-2911.	0.5	34
40	Osiris: accessible and reproducible phylogenetic and phylogenomic analyses within the Galaxy workflow management system. BMC Bioinformatics, 2014, 15, 230.	2.6	36
41	Occurrence of Hemocyanin in Ostracod Crustaceans. Journal of Molecular Evolution, 2014, 79, 3-11.	1.8	11
42	The influence of phylogenetic relatedness on species interactions among freshwater green algae in a mesocosm experiment. Journal of Ecology, 2014, 102, 1288-1299.	4.0	53
43	Ocular and Extraocular Expression of Opsins in the Rhopalium of Tripedalia cystophora (Cnidaria:) Tj ETQq1 1 0.7	′84314 rgE 2.5	BT /Overlock
44	Genome duplication and multiple evolutionary origins of complex migratory behavior in Salmonidae. Molecular Phylogenetics and Evolution, 2013, 69, 514-523.	2.7	86
45	The Evolution of Complexity in the Visual Systems of Stomatopods: Insights from Transcriptomics. Integrative and Comparative Biology, 2013, 53, 39-49.	2.0	45
46	Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae. Ecology Letters, 2013, 16, 1373-1381.	6.4	158
47	Shared ancestry influences community stability by altering competitive interactions: evidence from a laboratory microcosm experiment using freshwater green algae. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131548.	2.6	13
48	Phylotranscriptomics to Bring the Understudied into the Fold: Monophyletic Ostracoda, Fossil Placement, and Pancrustacean Phylogeny. Molecular Biology and Evolution, 2013, 30, 215-233.	8.9	218
49	Evasion of Predators Contributes to the Maintenance of Male Eyes in Sexually Dimorphic Euphilomedes Ostracods (Crustacea). Integrative and Comparative Biology, 2013, 53, 78-88.	2.0	22
50	Dispersal between Shallow and Abyssal Seas and Evolutionary Loss and Regain of Compound Eyes in Cylindroleberidid Ostracods: Conflicting Conclusions from Different Comparative Methods. Systematic Biology, 2012, 61, 314.	5.6	35
51	Blue-light-receptive cryptochrome is expressed in a sponge eye lacking neurons and opsin. Journal of Experimental Biology, 2012, 215, 1278-1286.	1.7	90
52	A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment. BMC Evolutionary Biology, 2012, 12, 129.	3.2	91
53	Cnidocyte discharge is regulated by light and opsin-mediated phototransduction. BMC Biology, 2012, 10, 17.	3.8	82
54	The Ecoresponsive Genome of <i>Daphnia pulex</i> . Science, 2011, 331, 555-561.	12.6	1,086

#	Article	IF	CITATIONS
55	Understanding the dermal light sense in the context of integrative photoreceptor cell biology. Visual Neuroscience, 2011, 28, 265-279.	1.0	54
56	Gene duplication and the origins of morphological complexity in pancrustacean eyes, a genomic approach. BMC Evolutionary Biology, 2010, 10, 123.	3.2	52
57	The Amphimedon queenslandica genome and the evolution of animal complexity. Nature, 2010, 466, 720-726.	27.8	917
58	Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecology Letters, 2010, 13, 96-105.	6.4	340
59	The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1963-1969.	2.6	75
60	Key Transitions During Animal Phototransduction Evolution. , 2010, , 217-237.		1
61	Using Phylogenetic, Functional and Trait Diversity to Understand Patterns of Plant Community Productivity. PLoS ONE, 2009, 4, e5695.	2.5	558
62	Evidence for light perception in a bioluminescent organ. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9836-9841.	7.1	99
63	Ontogeny of sexual dimorphism via tissue duplication in an ostracod (Crustacea). Evolution & Development, 2009, 11, 233-243.	2.0	17
64	Type II Opsins: Evolutionary Origin by Internal Domain Duplication?. Journal of Molecular Evolution, 2008, 66, 417-423.	1.8	28
65	Opening the "Black Box†The Genetic and Biochemical Basis of Eye Evolution. Evolution: Education and Outreach, 2008, 1, 390-402.	0.8	14
66	Erratic rates of molecular evolution and incongruence of fossil and molecular divergence time estimates in Ostracoda (Crustacea). Molecular Phylogenetics and Evolution, 2008, 48, 157-167.	2.7	44
67	Genomics and the evolutionary origins of nervous system complexity. Current Opinion in Genetics and Development, 2008, 18, 479-492.	3.3	27
68	Myelin sheaths are formed with proteins that originated in vertebrate lineages. Neuron Glia Biology, 2008, 4, 137-152.	1.6	24
69	Evolutionary history and the effect of biodiversity on plant productivity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17012-17017.	7.1	503
70	Reconstructing ancestral genome content based on symmetrical best alignments and Dollo parsimony. Bioinformatics, 2008, 24, 606-612.	4.1	16
71	Euphilomedes chupacabra (Ostracoda: Myodocopida: Philomedidae), a new demersal marine species from coastal Puerto Rico with male-biased vespertine swimming activity. Zootaxa, 2008, 1684, 35.	0.5	13
72	Key transitions during the evolution of animal phototransduction: novelty, "tree-thinking," co-option, and co-duplication. Integrative and Comparative Biology, 2007, 47, 759-769.	2.0	44

#	Article	IF	CITATIONS
73	The new biology: beyond the Modern Synthesis. Biology Direct, 2007, 2, 30.	4.6	62
74	Today's multiple choice exam: (a) gene duplication; (b) structural mutation; (c) coâ€option; (d) regulatory mutation; (e) all of the above. Evolution & Development, 2007, 9, 523-524.	2.0	10
75	Furcation, field-splitting, and the evolutionary origins of novelty in arthropod photoreceptors. Arthropod Structure and Development, 2007, 36, 386-400.	1.4	30
76	A Post-Synaptic Scaffold at the Origin of the Animal Kingdom. PLoS ONE, 2007, 2, e506.	2.5	215
77	The Origins of Novel Protein Interactions during Animal Opsin Evolution. PLoS ONE, 2007, 2, e1054.	2.5	99
78	CoMET: a Mesquite package for comparing models of continuous character evolution on phylogenies. Evolutionary Bioinformatics, 2007, 2, 183-6.	1.2	7
79	CoMET: A Mesquite Package for Comparing Models of Continuous Character Evolution on Phylogenies. Evolutionary Bioinformatics, 2006, 2, 117693430600200.	1.2	19
80	Repression and loss of gene expression outpaces activation and gain in recently duplicated fly genes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11637-11641.	7.1	49
81	Hierarchical phylogenetics as a quantitative analytical framework for evolutionary developmental biology. BioEssays, 2005, 27, 1158-1166.	2.5	43
82	Myodocopa (Crustacea: Ostracoda) as models for evolutionary studies of light and vision: multiple origins of bioluminescence and extreme sexual dimorphism. Hydrobiologia, 2005, 538, 179-192.	2.0	39
83	Comparative Methods for the Analysis of Gene-Expression Evolution: An Example Using Yeast Functional Genomic Data. Molecular Biology and Evolution, 2005, 22, 40-50.	8.9	68
84	New insights into the evolutionary history of photoreceptor cells. Trends in Ecology and Evolution, 2005, 20, 465-467.	8.7	39
85	Differential Expression of Duplicated Opsin Genes in Two EyeTypes of Ostracod Crustaceans. Journal of Molecular Evolution, 2004, 59, 239-249.	1.8	26
86	On Homology of Arthropod Compound Eyes. Integrative and Comparative Biology, 2003, 43, 522-530.	2.0	56
87	The eye as a replicating and diverging, modular developmental unit. Trends in Ecology and Evolution, 2003, 18, 623-627.	8.7	49
88	Molecular Evolution of Bat Color Vision Genes. Molecular Biology and Evolution, 2003, 21, 295-302.	8.9	86
89	Molecular phylogenetic evidence for the independent evolutionary origin of an arthropod compound eye. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1426-1430.	7.1	119
90	INDEPENDENT CONTRASTS SUCCEED WHERE ANCESTOR RECONSTRUCTION FAILS IN A KNOWN BACTERIOPHAGE PHYLOGENY. Evolution; International Journal of Organic Evolution, 2000, 54, 397-405.	2.3	155

#	Article	IF	CITATIONS
91	INDEPENDENT CONTRASTS SUCCEED WHERE ANCESTOR RECONSTRUCTION FAILS IN A KNOWN BACTERIOPHAGE PHYLOGENY. Evolution; International Journal of Organic Evolution, 2000, 54, 397.	2.3	16
92	Phylogeny of Salmonine Fishes Based on Growth Hormone Introns: Atlantic (Salmo) and Pacific (Oncorhynchus) Salmon Are Not Sister Taxa. Molecular Phylogenetics and Evolution, 1999, 11, 381-393.	2.7	115
93	Reconstructing ancestral character states: a critical reappraisal. Trends in Ecology and Evolution, 1998, 13, 361-366.	8.7	484
94	An Alul fragment isolated from lake trout (Salvelinus namaycush), maps to the intergenic spacer region of the rDNA cistron. Gene, 1997, 186, 7-11.	2.2	5
95	Physical localization and characterization of the Bgll element in the genomes of Atlantic salmon (Salmo salar L.) and brown trout (S. trutta L.). Gene, 1997, 194, 9-18.	2.2	12
96	Phylogenetic analysis of Pacific salmon (<i>genus Oncorhynchus</i>) using nuclear and mitochondrial DNA sequences. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54, 1865-1872.	1.4	18
97	Sequence, overproduction and purification of Vibrio proteolyticus ribosomal protein L 18 for in vitro and in vivo studies. Gene, 1996, 183, 237-242.	2.2	6
98	Evidence supporting the paraphyly of Hucho (Salmonidae) based on ribosomal DNA restriction maps. Journal of Fish Biology, 1995, 47, 956-961.	1.6	20