Razqallah Hakem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/453974/publications.pdf

Version: 2024-02-01

77 papers

12,840 citations

46984 47 h-index 74108 75 g-index

78 all docs 78 docs citations

times ranked

78

14371 citing authors

#	Article	IF	CITATIONS
1	Differential Requirement for Caspase 9 in Apoptotic Pathways In Vivo. Cell, 1998, 94, 339-352.	13.5	1,224
2	Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature, 2001, 410, 549-554.	13.7	1,212
3	Apaf1 Is Required for Mitochondrial Pathways of Apoptosis and Brain Development. Cell, 1998, 94, 739-750.	13.5	1,072
4	Catalytic activity of the caspase-8–FLIPL complex inhibits RIPK3-dependent necrosis. Nature, 2011, 471, 363-367.	13.7	1,059
5	RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature, 2011, 471, 368-372.	13.7	881
6	Pirh2, a p53-Induced Ubiquitin-Protein Ligase, Promotes p53 Degradation. Cell, 2003, 112, 779-791.	13.5	657
7	The Tumor Suppressor Gene Brca1 Is Required for Embryonic Cellular Proliferation in the Mouse. Cell, 1996, 85, 1009-1023.	13.5	647
8	Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes and Development, 2003, 17, 883-895.	2.7	412
9	Requirement for Caspase-8 in NF-ÂB Activation by Antigen Receptor. Science, 2005, 307, 1465-1468.	6.0	404
10	DNA-damage repair; the good, the bad, and the ugly. EMBO Journal, 2008, 27, 589-605.	3.5	396
11	Stress-signalling kinase Sek1 protects thymocytes from apoptosis mediated by CD95 and CD3. Nature, 1997, 385, 350-353.	13.7	339
12	Dysregulation of the mevalonate pathway promotes transformation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15051-15056.	3.3	323
13	Partial rescue of Brca15–6 early embryonic lethality by p53 or p21 null mutation. Nature Genetics, 1997, 16, 298-302.	9.4	237
14	The Pseudokinase MLKL and the Kinase RIPK3 Have Distinct Roles in Autoimmune Disease Caused by Loss of Death-Receptor-Induced Apoptosis. Immunity, 2016, 45, 513-526.	6.6	191
15	Lats2/Kpm is required for embryonic development, proliferation control and genomic integrity. EMBO Journal, 2004, 23, 3677-3688.	3.5	179
16	Involvement of Mammalian Mus81 in Genome Integrity and Tumor Suppression. Science, 2004, 304, 1822-1826.	6.0	178
17	Caspase-3 regulates cell cycle in B cells: a consequence of substrate specificity. Nature Immunology, 2003, 4, 1016-1022.	7.0	158
	Essential Role for Caspase-8 in Toll-like Receptors and NFκB Signaling. Journal of Biological Chemistry,		

#	Article	IF	CITATIONS
19	Nucleolar RNA polymerase II drives ribosome biogenesis. Nature, 2020, 585, 298-302.	13.7	135
20	Caspase-3-Dependent \hat{l}^2 -Cell Apoptosis in the Initiation of Autoimmune Diabetes Mellitus. Molecular and Cellular Biology, 2005, 25, 3620-3629.	1.1	129
21	CD28-dependent Activation of Protein Kinase B/Akt Blocks Fas-mediated Apoptosis by Preventing Death-inducing Signaling Complex Assembly. Journal of Experimental Medicine, 2002, 196, 335-348.	4.2	128
22	Fatal Hepatitis Mediated by Tumor Necrosis Factor TNFα Requires Caspase-8 and Involves the BH3-Only Proteins Bid and Bim. Immunity, 2009, 30, 56-66.	6.6	128
23	RIP3 Inhibits Inflammatory Hepatocarcinogenesis but Promotes Cholestasis by Controlling Caspase-8-and JNK-Dependent Compensatory Cell Proliferation. Cell Reports, 2013, 4, 776-790.	2.9	124
24	Eme1 is involved in DNA damage processing and maintenance of genomic stability in mammalian cells. EMBO Journal, 2003, 22, 6137-6147.	3.5	118
25	Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer. Journal of Experimental Medicine, 2010, 207, 983-997.	4.2	112
26	Apoptosis caused by p53-induced protein with death domain (PIDD) depends on the death adapter protein RAIDD. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14314-14320.	3.3	96
27	Systemic ceramide accumulation leads to severe and varied pathological consequences. EMBO Molecular Medicine, 2013, 5, 827-842.	3.3	90
28	Reducing protein oxidation reverses lung fibrosis. Nature Medicine, 2018, 24, 1128-1135.	15.2	88
29	Endoplasmic Reticulum Stress-induced Death of Mouse Embryonic Fibroblasts Requires the Intrinsic Pathway of Apoptosis*. Journal of Biological Chemistry, 2007, 282, 14132-14139.	1.6	85
30	DICER1/ <i>Alu</i> RNA dysmetabolism induces Caspase-8–mediated cell death in age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16082-16087.	3.3	79
31	Cellular FLICE-inhibitory protein is required for T cell survival and cycling. Journal of Experimental Medicine, 2005, 202, 405-413.	4.2	77
32	Brca1 required for T cell lineage development but not TCR loci rearrangement. Nature Immunology, 2000, 1, 77-82.	7.0	74
33	Developmental studies of Brca1 and Brca2 knock-out mice. Journal of Mammary Gland Biology and Neoplasia, 1998, 3, 431-445.	1.0	7 3
34	Genomic Instability, Defective Spermatogenesis, Immunodeficiency, and Cancer in a Mouse Model of the RIDDLE Syndrome. PLoS Genetics, 2011, 7, e1001381.	1.5	73
35	RNF168 ubiquitylates 53BP1 and controls its response to DNA double-strand breaks. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20982-20987.	3.3	7 3
36	Gene targeting in the analysis of mammalian apoptosis and TNF receptor superfamily signaling. Immunological Reviews, 1999, 169, 283-302.	2.8	70

#	Article	IF	CITATIONS
37	A role for Brca1 in chromosome end maintenance. Human Molecular Genetics, 2006, 15, 831-838.	1.4	70
38	LATS2 Suppresses Oncogenic Wnt Signaling by Disrupting \hat{l}^2 -Catenin/BCL9 Interaction. Cell Reports, 2013, 5, 1650-1663.	2.9	69
39	Caspase-8 deficiency in T cells leads to a lethal lymphoinfiltrative immune disorder. Journal of Experimental Medicine, 2005, 202, 727-732.	4.2	68
40	Role of Pirh2 in Mediating the Regulation of p53 and c-Myc. PLoS Genetics, 2011, 7, e1002360.	1.5	65
41	The pseudokinase MLKL activates PAD4-dependent NET formation in necroptotic neutrophils. Science Signaling, 2018, 11, .	1.6	65
42	Distinct In Vivo Roles of Caspase-8 in Â-Cells in Physiological and Diabetes Models. Diabetes, 2007, 56, 2302-2311.	0.3	63
43	DNA double-strand break signaling and human disorders. Genome Integrity, 2010, 1, 15.	1.0	63
44	Collaboration of Brca1 and Chk2 in tumorigenesis. Genes and Development, 2004, 18, 1144-1153.	2.7	61
45	Neuronal Deletion of Caspase 8 Protects against Brain Injury in Mouse Models of Controlled Cortical Impact and Kainic Acid-Induced Excitotoxicity. PLoS ONE, 2011, 6, e24341.	1.1	57
46	Th-MYCN Mice with Caspase-8 Deficiency Develop Advanced Neuroblastoma with Bone Marrow Metastasis. Cancer Research, 2013, 73, 4086-4097.	0.4	57
47	Animal Models of Tumor-Suppressor Genes. Annual Review of Genetics, 2001, 35, 209-241.	3.2	52
48	Exploiting synthetic lethality to target BRCA1/2-deficient tumors: where we stand. Oncogene, 2021, 40, 3001-3014.	2.6	49
49	Pirh2 E3 Ubiquitin Ligase Monoubiquitinates DNA Polymerase Eta To Suppress Translesion DNA Synthesis. Molecular and Cellular Biology, 2011, 31, 3997-4006.	1.1	47
50	Coupling of caspase-9 to Apaf1 in response to loss of pRb or cytotoxic drugs is cell-type-specific. EMBO Journal, 2004, 23, 460-472.	3.5	46
51	Brca2 Deficiency Does Not Impair Mammary Epithelium Development but Promotes Mammary Adenocarcinoma Formation in p53+/â^ Mutant Mice. Cancer Research, 2004, 64, 1959-1965.	0.4	42
52	Executionary pathway for apoptosis: lessons from mutant mice. Cell Research, 2000, 10, 267-278.	5.7	41
53	RNF168 regulates R-loop resolution and genomic stability in BRCA1/2-deficient tumors. Journal of Clinical Investigation, 2021, 131, .	3.9	38
54	Pirh2. Cell Cycle, 2013, 12, 2733-2737.	1.3	36

#	Article	IF	CITATIONS
55	The c-FLIPL Cleavage Product p43FLIP Promotes Activation of Extracellular Signal-regulated Kinase (ERK), Nuclear Factor κB (NF-κB), and Caspase-8 and T Cell Survival. Journal of Biological Chemistry, 2014, 289, 1183-1191.	1.6	35
56	RNF168 and USP10 regulate topoisomerase $\hat{\text{Ill}}$ function via opposing effects on its ubiquitylation. Nature Communications, 2016, 7, 12638.	5.8	35
57	Ptpn6 inhibits caspase-8- and Ripk3/Mlkl-dependent inflammation. Nature Immunology, 2020, 21, 54-64.	7.0	33
58	Ubiquitin ligase RNF8 suppresses Notch signaling to regulate mammary development and tumorigenesis. Journal of Clinical Investigation, 2018, 128, 4525-4542.	3.9	31
59	Functional Interplay of p53 and Mus81 in DNA Damage Responses and Cancer. Cancer Research, 2007, 67, 8527-8535.	0.4	30
60	The role of caspase-8 in amyloid-induced beta cell death in human and mouse islets. Diabetologia, 2014, 57, 765-775.	2.9	28
61	Absence of Caspase-3 Protects Pancreatic \hat{l}^2 -Cells from c-Myc-induced Apoptosis without Leading to Tumor Formation. Journal of Biological Chemistry, 2009, 284, 10947-10956.	1.6	22
62	Caspase-8 inactivation in T cells increases necroptosis and suppresses autoimmunity in <i>Bimâ^'/â^'</i> mice. Journal of Cell Biology, 2011, 195, 277-291.	2.3	22
63	Perforin-dependent activation-induced cell death acts through caspase 3 but not through caspases 8 or 9. European Journal of Immunology, 2003, 33, 769-778.	1.6	20
64	Synergistic Interaction of Rnf8 and p53 in the Protection against Genomic Instability and Tumorigenesis. PLoS Genetics, 2013, 9, e1003259.	1.5	19
65	Inactivation of Chk2 and Mus81 Leads to Impaired Lymphocytes Development, Reduced Genomic Instability, and Suppression of Cancer. PLoS Genetics, 2011, 7, e1001385.	1.5	18
66	Transfected trophoblastâ€derived human cells can express a single HLA class I allelic product. Tissue Antigens, 1991, 37, 84-89.	1.0	17
67	AID and Caspase 8 Shape the Germinal Center Response through Apoptosis. Journal of Immunology, 2013, 191, 5840-5847.	0.4	17
68	Caspase-8 is essential for maintaining chromosomal stability and suppressing B-cell lymphomagenesis. Blood, 2012, 119, 3495-3502.	0.6	15
69	BRCA1 and Metastasis: Outcome of Defective DNA Repair. Cancers, 2022, 14, 108.	1.7	12
70	Genome Integrity - a new open access journal. Genome Integrity, 2010, 1, 1.	1.0	8
71	Differential transcription inducibility by interferon of the HLA-A3 and HLA-B7 class-I genes. International Journal of Cancer, 1991, 47, 2-9.	2.3	7
72	Emerging roles of DNA topoisomerases in the regulation of R-loops. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2022, 876-877, 503450.	0.9	7

#	Article	lF	CITATIONS
73	Immune Cell Associations with Cancer Risk. IScience, 2020, 23, 101296.	1.9	6
74	Histamine signaling and metabolism identify potential biomarkers and therapies for lymphangioleiomyomatosis. EMBO Molecular Medicine, 2021, 13, e13929.	3.3	6
75	From photomorphogenesis to cancer. Cell Cycle, 2013, 12, 205-206.	1.3	5
76	Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer. Journal of Cell Biology, 2010, 189, i6-i6.	2.3	0
77	Caspase-8 inactivation in T cells increases necroptosis and suppresses autoimmunity inBimâ^'/â^'mice. Journal of Experimental Medicine, 2011, 208, i30-i30.	4.2	O