
Ming Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4539474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The heterogeneity of cellular senescence: insights at the single-cell level. Trends in Cell Biology, 2023, 33, 9-17.	7.9	68
2	Targeting p21Cip1 highly expressing cells in adipose tissue alleviates insulin resistance in obesity. Cell Metabolism, 2022, 34, 75-89.e8.	16.2	68
3	Senescenceâ€induced changes in CD4 T cell differentiation can be alleviated by treatment with senolytics. Aging Cell, 2022, 21, e13525.	6.7	18
4	Senolytics improve bone forming potential of bone marrow mesenchymal stem cells from aged mice. Npj Regenerative Medicine, 2021, 6, 34.	5.2	40
5	Senolytics alleviate the degenerative disorders of temporomandibular joint in old age. Aging Cell, 2021, 20, e13394.	6.7	17
6	Temporomandibular joint aging and potential therapies. Aging, 2021, 13, 17955-17956.	3.1	1
7	Network Topology of Biological Aging and Geroscience-Guided Approaches to COVID-19. Frontiers in Aging, 2021, 2, .	2.6	3
8	Strategies for targeting senescent cells in human disease. Nature Aging, 2021, 1, 870-879.	11.6	192
9	An inducible p21-Cre mouse model to monitor and manipulate p21-highly-expressing senescent cells in vivo. Nature Aging, 2021, 1, 962-973.	11.6	61
10	Senolytics: Targeting Senescent Cells for Age-Associated Diseases. Current Molecular Biology Reports, 2020, 6, 161-172.	1.6	4
11	Transplanting cells from old but not young donors causes physical dysfunction in older recipients. Aging Cell, 2020, 19, e13106.	6.7	51
12	Targeting senescence improves angiogenic potential of adipose-derived mesenchymal stem cells in patients with preeclampsia. Biology of Sex Differences, 2019, 10, 49.	4.1	49
13	Targeting senescent cells alleviates obesityâ€induced metabolic dysfunction. Aging Cell, 2019, 18, e12950.	6.7	395
14	Surgical Compliance and Outcomes in Gastric Cancer: a population-based cohort study. Journal of Cancer, 2019, 10, 779-788.	2.5	15
15	Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. Cell Metabolism, 2019, 29, 1061-1077.e8.	16.2	293
16	Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine, 2018, 36, 18-28.	6.1	554
17	Senolytics improve physical function and increase lifespan in old age. Nature Medicine, 2018, 24, 1246-1256.	30.7	1,384
18	Transplanted Senescent Cells Induce an Osteoarthritis-Like Condition in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw154.	3.6	163

Μίνς Χυ

#	Article	IF	CITATIONS
19	17α-Estradiol Alleviates Age-related Metabolic and Inflammatory Dysfunction in Male Mice Without Inducing Feminization. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 3-15.	3.6	91
20	Targeting cellular senescence prevents age-related bone loss in mice. Nature Medicine, 2017, 23, 1072-1079.	30.7	754
21	Perspective: Targeting the JAK/STAT pathway to fight age-related dysfunction. Pharmacological Research, 2016, 111, 152-154.	7.1	54
22	Histone deacetylase 3 supports endochondral bone formation by controlling cytokine signaling and matrix remodeling. Science Signaling, 2016, 9, ra79.	3.6	60
23	Targeting senescent cells enhances adipogenesis and metabolic function in old age. ELife, 2015, 4, e12997.	6.0	436
24	A meta-analysis of single-stage versus two-stage management for concomitant gallstones and common bile duct stones. Clinics and Research in Hepatology and Gastroenterology, 2015, 39, 584-593.	1.5	84
25	JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6301-10.	7.1	543
26	Cellular Senescence in Type 2 Diabetes: A Therapeutic Opportunity. Diabetes, 2015, 64, 2289-2298.	0.6	294
27	Potential biomarkers for sensitivity of gallbladder cancer cells to gemcitabine. International Journal of Clinical and Experimental Pathology, 2014, 7, 521-8.	0.5	5
28	Beta-cell injury in Ncb5or-null mice is exacerbated by consumption of a high-fat diet. European Journal of Lipid Science and Technology, 2012, 114, 233-243.	1.5	6
29	Development of diabetes in lean Ncb5or-null mice is associated with manifestations of endoplasmic reticulum and oxidative stress in beta cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1532-1541.	3.8	17
30	Ncb5or Deficiency Increases Fatty Acid Catabolism and Oxidative Stress. Journal of Biological Chemistry, 2011, 286, 11141-11154.	3.4	31
31	Characterization of interâ€domain electron transfer in Ncb5or, a redox enzyme involved in fatty acid desaturation. FASEB Journal, 2009, 23, LB225.	0.5	0
32	Postâ€translational modification of POU domain transcription factor Octâ€4 by SUMOâ€1. FASEB Journal, 2007, 21, 3042-3051.	0.5	62
33	Inferring population history from fine-scale spatial genetic analysis in Oryza rufipogon (Poaceae). Molecular Ecology, 2006, 15, 1535-1544.	3.9	14