Chuanyong Jing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4538371/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption Mechanism of Arsenic on Nanocrystalline Titanium Dioxide. Environmental Science & Technology, 2006, 40, 1257-1262.	10.0	425
2	Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: Structure, photoactivity and degradation mechanisms. Applied Catalysis B: Environmental, 2019, 244, 475-485.	20.2	212
3	Arsenic Removal and Recovery from Copper Smelting Wastewater Using TiO ₂ . Environmental Science & Technology, 2010, 44, 9094-9098.	10.0	157
4	Preparation of Thiol Modified Fe ₃ O ₄ @Ag Magnetic SERS Probe for PAHs Detection and Identification. Journal of Physical Chemistry C, 2011, 115, 17829-17835.	3.1	153
5	Redox Transformations of Arsenic and Iron in Water Treatment Sludge during Aging and TCLP Extraction. Environmental Science & Technology, 2001, 35, 3476-3481.	10.0	137
6	Surface complexation of organic arsenic on nanocrystalline titanium oxide. Journal of Colloid and Interface Science, 2005, 290, 14-21.	9.4	119
7	Insights into Antimony Adsorption on {001} TiO ₂ : XAFS and DFT Study. Environmental Science & Technology, 2017, 51, 6335-6341.	10.0	118
8	La3+-modified activated alumina for fluoride removal from water. Journal of Hazardous Materials, 2014, 278, 343-349.	12.4	116
9	Fabrication, Characterization, and Application of a Composite Adsorbent for Simultaneous Removal of Arsenic and Fluoride. ACS Applied Materials & Interfaces, 2012, 4, 714-720.	8.0	102
10	Altitudinal and Spatial Signature of Persistent Organic Pollutants in Soil, Lichen, Conifer Needles, and Bark of the Southeast Tibetan Plateau: Implications for Sources and Environmental Cycling. Environmental Science & Technology, 2013, 47, 12736-12743.	10.0	99
11	Facile Detection of Polycyclic Aromatic Hydrocarbons by a Surface-Enhanced Raman Scattering Sensor Based on the Au Coffee Ring Effect. ACS Applied Materials & Interfaces, 2014, 6, 6891-6897.	8.0	99
12	Mechanistic insights into TiO 2 thickness in Fe 3 O 4 @TiO 2 -GO composites for enrofloxacin photodegradation. Chemical Engineering Journal, 2017, 325, 647-654.	12.7	98
13	Immobilization Mechanisms of Arsenate in Iron Hydroxide Sludge Stabilized with Cement. Environmental Science & Technology, 2003, 37, 5050-5056.	10.0	91
14	Arsenic Leachability in Water Treatment Adsorbents. Environmental Science & Technology, 2005, 39, 5481-5487.	10.0	91
15	Common oxidants activate the reactivity of zero-valent iron (ZVI) and hence remarkably enhance nitrate reduction from water. Separation and Purification Technology, 2015, 146, 227-234.	7.9	91
16	Preparation of Fe3O4@Ag SERS substrate and its application in environmental Cr(VI) analysis. Journal of Colloid and Interface Science, 2011, 358, 54-61.	9.4	89
17	Rapid in situ identification of arsenic species using a portable Fe ₃ O ₄ @Ag SERS sensor. Chemical Communications, 2014, 50, 347-349.	4.1	83
18	Arsenic Levels and Speciation from Ingestion Exposures to Biomarkers in Shanxi, China: Implications for Human Health. Environmental Science & Amp: Technology, 2013, 47, 5419-5424.	10.0	82

#	Article	IF	CITATIONS
19	Principal component analysis of fluoride geochemistry of groundwater in Shanxi and Inner Mongolia, China. Journal of Geochemical Exploration, 2013, 135, 124-129.	3.2	81
20	Organochlorine pesticides and PCBs in fish from lakes of the Tibetan Plateau and the implications. Environmental Pollution, 2010, 158, 2310-2316.	7.5	80
21	Adsorption of Enrofloxacin on montmorillonite: Two-dimensional correlation ATR/FTIR spectroscopy study. Journal of Colloid and Interface Science, 2013, 390, 196-203.	9.4	80
22	Enrofloxacin sorption on smectite clays: Effects of pH, cations, and humic acid. Journal of Colloid and Interface Science, 2012, 372, 141-147.	9.4	78
23	Adhesion of <i>Shewanella oneidensis</i> MR-1 to Goethite: A Two-Dimensional Correlation Spectroscopic Study. Environmental Science & Technology, 2016, 50, 4343-4349.	10.0	77
24	Multifunctional Fe ₃ O ₄ @SiO ₂ –Au Satellite Structured SERS Probe for Charge Selective Detection of Food Dyes. ACS Applied Materials & Interfaces, 2016, 8, 3056-3062.	8.0	77
25	Comparative study of glyphosate removal on goethite and magnetite: Adsorption and photo-degradation. Chemical Engineering Journal, 2018, 352, 581-589.	12.7	77
26	Mechanisms of Photocatalytical Degradation of Monomethylarsonic and Dimethylarsinic Acids Using Nanocrystalline Titanium Dioxide. Environmental Science & Technology, 2008, 42, 2349-2354.	10.0	76
27	A novel colorimetric method for field arsenic speciation analysis. Journal of Environmental Sciences, 2012, 24, 1341-1346.	6.1	75
28	Mechanistic study of PFOS adsorption on kaolinite and montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 462, 252-258.	4.7	75
29	Arsenic Adsorption on Lanthanum-Impregnated Activated Alumina: Spectroscopic and DFT Study. ACS Applied Materials & Interfaces, 2015, 7, 26735-26741.	8.0	75
30	Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron. Journal of Hazardous Materials, 2012, 215-216, 152-158.	12.4	73
31	Mechanistic study of simultaneous arsenic and fluoride removal using granular TiO2-La adsorbent. Chemical Engineering Journal, 2017, 313, 983-992.	12.7	70
32	Recent progress in detection of mercury using surface enhanced Raman spectroscopy — A review. Journal of Environmental Sciences, 2016, 39, 134-143.	6.1	69
33	Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study. Journal of Environmental Sciences, 2015, 32, 42-53.	6.1	66
34	<i>In situ</i> remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environmental Science: Nano, 2019, 6, 1283-1302.	4.3	65
35	Lead leachability in stabilized/solidified soil samples evaluated with different leaching tests. Journal of Hazardous Materials, 2004, 114, 101-110.	12.4	64
36	Sedimentary records of polycyclic aromatic hydrocarbons (PAHs) in remote lakes across the Tibetan Plateau. Environmental Pollution, 2016, 214, 1-7.	7.5	64

#	Article	IF	CITATIONS
37	Identification of Emerging Brominated Chemicals as the Transformation Products of Tetrabromobisphenol A (TBBPA) Derivatives in Soil. Environmental Science & Technology, 2017, 51, 5434-5444.	10.0	63
38	Molecular Insights into Ternary Surface Complexation of Arsenite and Cadmium on TiO ₂ . Environmental Science & Technology, 2015, 49, 5973-5979.	10.0	62
39	Simultaneous As(III) and Cd removal from copper smelting wastewater using granular TiO2 columns. Water Research, 2015, 68, 572-579.	11.3	61
40	Dynamic Adsorption of Catechol at the Goethite/Aqueous Solution Interface: A Molecular-Scale Study. Langmuir, 2012, 28, 14588-14597.	3.5	60
41	Remediation of organic and inorganic arsenic contaminated groundwater using a nanocrystalline TiO2-based adsorbent. Environmental Pollution, 2009, 157, 2514-2519.	7.5	59
42	Molecular Insights into Glyphosate Adsorption to Goethite Gained from ATR-FTIR, Two-Dimensional Correlation Spectroscopy, and DFT Study. Environmental Science & Technology, 2018, 52, 1946-1953.	10.0	59
43	Leaching behavior of Cr(III) in stabilized/solidified soil. Chemosphere, 2006, 64, 379-385.	8.2	56
44	Arsenic Biotransformation in Solid Waste Residue: Comparison of Contributions from Bacteria with Arsenate and Iron Reducing Pathways. Environmental Science & Technology, 2015, 49, 2140-2146.	10.0	55
45	Au nanoparticles grafted on Fe3O4 as effective SERS substrates for label-free detection of the 16 EPA priority polycyclic aromatic hydrocarbons. Analytica Chimica Acta, 2016, 915, 81-89.	5.4	55
46	Simultaneous arsenic and fluoride removal using {201}TiO2–ZrO2: Fabrication, characterization, and mechanism. Journal of Hazardous Materials, 2019, 377, 267-273.	12.4	55
47	A review of arsenic interfacial geochemistry in groundwater and the role of organic matter. Ecotoxicology and Environmental Safety, 2019, 183, 109550.	6.0	53
48	Groundwater Arsenic Adsorption on Granular TiO ₂ : Integrating Atomic Structure, Filtration, and Health Impact. Environmental Science & Technology, 2015, 49, 9707-9713.	10.0	51
49	Recent progress of arsenic adsorption on TiO 2 in the presence of coexisting ions: A review. Journal of Environmental Sciences, 2016, 49, 74-85.	6.1	50
50	Performance of a Household-Level Arsenic Removal System during 4-Month Deployments in Bangladesh. Environmental Science & Technology, 2004, 38, 3442-3448.	10.0	49
51	Enrofloxacin Transformation on <i>Shewanella oneidensis</i> MR-1 Reduced Goethite during Anaerobic–Aerobic Transition. Environmental Science & Technology, 2016, 50, 11034-11040.	10.0	48
52	Antimony Redox Biotransformation in the Subsurface: Effect of Indigenous Sb(V) Respiring Microbiota. Environmental Science & Technology, 2018, 52, 1200-1207.	10.0	48
53	Anthropogenic PAHs in lake sediments: a literature review (2002–2018). Environmental Sciences: Processes and Impacts, 2018, 20, 1649-1666.	3.5	48
54	Arsenic adsorption on hematite facets: spectroscopy and DFT study. Environmental Science: Nano, 2020, 7, 3927-3939.	4.3	48

#	Article	IF	CITATIONS
55	Polybrominated diphenyl ethers (PBDEs) and mercury in fish from lakes of the Tibetan Plateau. Chemosphere, 2011, 83, 862-867.	8.2	47
56	Antimony exposure and speciation in human biomarkers near an active mining area in Hunan, China. Science of the Total Environment, 2018, 640-641, 1-8.	8.0	47
57	Linking N ₂ O Emissions from Biofertilizer-Amended Soil of Tea Plantations to the Abundance and Structure of N ₂ O-Reducing Microbial Communities. Environmental Science & Technology, 2018, 52, 11338-11345.	10.0	46
58	Deciphering co-catalytic mechanisms of potassium doped g-C3N4 in Fenton process. Journal of Hazardous Materials, 2020, 392, 122472.	12.4	45
59	Sorption of organophosphate esters by carbon nanotubes. Journal of Hazardous Materials, 2014, 273, 53-60.	12.4	44
60	Competing Interactions of As Adsorption and Fe(III) Polymerization during Ferric Coprecipitation Treatment. Environmental Science & amp; Technology, 2018, 52, 7343-7350.	10.0	43
61	Enhanced Hydrolysis of <i>p</i> -Nitrophenyl Phosphate by Iron (Hydr)oxide Nanoparticles: Roles of Exposed Facets. Environmental Science & amp; Technology, 2020, 54, 8658-8667.	10.0	42
62	Synthesis, characterization and application of lanthanum-impregnated activated alumina for F removal. Journal of Materials Chemistry A, 2013, 1, 12797.	10.3	40
63	Simultaneous removal of arsenic and antimony from mining wastewater using granular TiO2: Batch and field column studies. Journal of Environmental Sciences, 2019, 75, 269-276.	6.1	39
64	TiO2 crystal facet-dependent antimony adsorption and photocatalytic oxidation. Journal of Colloid and Interface Science, 2017, 496, 522-530.	9.4	38
65	Influence of sulfur on the mobility of arsenic and antimony during oxic-anoxic cycles: Differences and competition. Geochimica Et Cosmochimica Acta, 2020, 288, 51-67.	3.9	38
66	Comparison of arsenic geochemical evolution in the Datong Basin (Shanxi) and Hetao Basin (Inner) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
67	Direct evidence for surface long-lived superoxide radicals photo-generated in TiO ₂ and other metal oxide suspensions. Physical Chemistry Chemical Physics, 2018, 20, 18978-18985.	2.8	37
68	Removal of arsenate with hydrous ferric oxide coprecipitation: Effect of humic acid. Journal of Environmental Sciences, 2014, 26, 240-247.	6.1	36
69	How TiO ₂ facets determine arsenic adsorption and photooxidation: spectroscopic and DFT studies. Catalysis Science and Technology, 2016, 6, 2419-2426.	4.1	36
70	Colorimetric Au Nanoparticle Probe for Speciation Test of Arsenite and Arsenate Inspired by Selective Interaction between Phosphonium Ionic Liquid and Arsenite. ACS Applied Materials & Interfaces, 2014, 6, 19833-19839.	8.0	35
71	Experimental and molecular dynamic simulation study of perfluorooctane sulfonate adsorption on soil and sediment components. Journal of Environmental Sciences, 2015, 29, 131-138.	6.1	34
72	Mechanistic Study for Antimony Adsorption and Precipitation on Hematite Facets. Environmental Science & amp; Technology, 2022, 56, 3138-3146.	10.0	34

#	Article	IF	CITATIONS
73	Raman microspectroscopy of nucleus and cytoplasm for human colon cancer diagnosis. Biosensors and Bioelectronics, 2017, 97, 70-74.	10.1	33
74	Nanocrystal facet modulation to enhance transferrin binding and cellular delivery. Nature Communications, 2020, 11, 1262.	12.8	33
75	Polycyclic aromatic hydrocarbons in soils and lichen from the western Tibetan Plateau: Concentration profiles, distribution and its influencing factors. Ecotoxicology and Environmental Safety, 2018, 152, 151-158.	6.0	31
76	Low-Molecular-Weight Organic Acid Complexation Affects Antimony(III) Adsorption by Granular Ferric Hydroxide. Environmental Science & amp; Technology, 2019, 53, 5221-5229.	10.0	31
77	One-step fabrication of dopamine-inspired Au for SERS sensing of Cd2+ and polycyclic aromatic hydrocarbons. Analytica Chimica Acta, 2019, 1062, 131-139.	5.4	30
78	Evaluation of chromium bioaccessibility in chromite ore processing residue using in vitro gastrointestinal method. Journal of Hazardous Materials, 2012, 209-210, 250-255.	12.4	29
79	Fate of Arsenate Adsorbed on Nano-TiO ₂ in the Presence of Sulfate Reducing Bacteria. Environmental Science & Technology, 2013, 47, 10939-10946.	10.0	29
80	Extracellular polymeric substances from Shewanella oneidensis MR-1 biofilms mediate the transformation of Ferrihydrite. Science of the Total Environment, 2021, 784, 147245.	8.0	29
81	Arsenic remobilization in water treatment adsorbents under reducing conditions: Part I. Incubation study. Science of the Total Environment, 2008, 389, 188-194.	8.0	28
82	<i>Bacillus</i> sp. SXB and <i>Pantoea</i> sp. IMH, aerobic As(V)-reducing bacteria isolated from arsenic-contaminated soil. Journal of Applied Microbiology, 2013, 114, 713-721.	3.1	28
83	Multifunctional satellite Fe3O4-Au@TiO2 nano-structure for SERS detection and photo-reduction of Cr(VI). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 234-240.	4.7	28
84	Metagenomic insights into microbial arsenic metabolism in shallow groundwater of Datong basin, China. Chemosphere, 2020, 245, 125603.	8.2	28
85	Groundwater arsenic removal using granular TiO2: integrated laboratory and field study. Environmental Science and Pollution Research, 2015, 22, 8224-8234.	5.3	27
86	Competitive adsorption of arsenic and fluoride on {2 0 1} TiO2. Applied Surface Science, 2019, 466, 425-432.	6.1	27
87	Arsenic leachability and speciation in cement immobilized water treatment sludge. Chemosphere, 2005, 59, 1241-1247.	8.2	26
88	Arsenic interception by cell wall of bacteria observed with surface-enhanced Raman scattering. Journal of Microbiological Methods, 2012, 89, 153-158.	1.6	26
89	Sulfate-Reducing Bacteria Mobilize Adsorbed Antimonate by Thioantimonate Formation. Environmental Science and Technology Letters, 2019, 6, 418-422.	8.7	26
90	Competitive arsenate and phosphate adsorption on α-FeOOH, LaOOH, and nano-TiO2: Two-dimensional correlation spectroscopy study. Journal of Hazardous Materials, 2021, 414, 125512.	12.4	26

#	Article	IF	CITATIONS
91	A Review of Redox Transformation of Arsenic in Aquatic Environments. ACS Symposium Series, 2002, , 70-83.	0.5	24
92	Modulating Highâ€Index Facets on Anatase TiO ₂ . European Journal of Inorganic Chemistry, 2018, 2018, 683-693.	2.0	23
93	Arsenic mobilization in spent nZVI waste residue: Effect of Pantoea sp. IMH. Environmental Pollution, 2017, 230, 1081-1089.	7.5	22
94	Genetic Identification of Antimonate Respiratory Reductase in <i>Shewanella</i> sp. ANA-3. Environmental Science & Technology, 2020, 54, 14107-14113.	10.0	22
95	Proteomic profiling reveals candidate markers for arsenic-induced skin keratosis. Environmental Pollution, 2016, 218, 34-38.	7.5	21
96	Reductive transformation of nitroaromatic compounds by Pd nanoparticles on nitrogen-doped carbon (Pd@NC) biosynthesized using Pantoea sp. IMH. Journal of Hazardous Materials, 2019, 366, 338-345.	12.4	21
97	Hairpin-Structured Magnetic SERS Sensor for Tetracycline Resistance Gene <i>tetA</i> Detection. Analytical Chemistry, 2020, 92, 16229-16235.	6.5	21
98	Mechanistic study for stibnite oxidative dissolution and sequestration on pyrite. Environmental Pollution, 2020, 262, 114309.	7.5	21
99	Molecular-Scale Study of Salicylate Adsorption and Competition with Catechol at Goethite/Aqueous Solution Interface. Journal of Physical Chemistry C, 2013, 117, 10597-10606.	3.1	20
100	Insights into Propranolol Adsorption on TiO ₂ : Spectroscopic and Molecular Modeling Study. Journal of Physical Chemistry C, 2013, 117, 5785-5791.	3.1	19
101	Insights from Arsenate Adsorption on Rutile (110): Grazing-Incidence X-ray Absorption Fine Structure Spectroscopy and DFT+U Study. Journal of Physical Chemistry A, 2014, 118, 4759-4765.	2.5	19
102	Comparative Genomic Analysis Reveals Organization, Function and Evolution of ars Genes in Pantoea spp Frontiers in Microbiology, 2017, 8, 471.	3.5	19
103	Simulation and synthesis of Fe ₃ O ₄ –Au satellite nanostructures for optimised surface-enhanced Raman scattering. Journal of Materials Chemistry C, 2018, 6, 2252-2257.	5.5	18
104	Arsenic re-mobilization in water treatment adsorbents under reducing conditions: Part II. XAS and modeling study. Science of the Total Environment, 2008, 392, 137-144.	8.0	17
105	Tâ€Hg ²⁺ â€Tâ€based satellite structured surface enhanced Raman scattering sensor for Hg ²⁺ detection. Journal of Raman Spectroscopy, 2018, 49, 1575-1580.	2.5	17
106	Biotransformation of adsorbed arsenic on iron minerals by coexisting arsenate-reducing and arsenite-oxidizing bacteria. Environmental Pollution, 2020, 256, 113471.	7.5	17
107	Effect of Bonding Interactions between Arsenate and Silver Nanofilm on Surface-Enhanced Raman Scattering Sensitivity. Journal of Physical Chemistry C, 2012, 116, 325-329.	3.1	16
108	Immobilization and transformation of co-existing arsenic and antimony in highly contaminated sediment by nano zero-valent iron. Journal of Environmental Sciences, 2022, 112, 152-160.	6.1	16

#	Article	IF	CITATIONS
109	Dechloranes in lichens from the southeast Tibetan Plateau: Evidence of long-range atmospheric transport. Chemosphere, 2016, 144, 446-451.	8.2	14
110	Satellite Fe ₃ O ₄ @SiO ₂ –Au SERS probe for trace Hg ²⁺ detection. RSC Advances, 2016, 6, 73040-73044.	3.6	13
111	Photocatalytic CO ₂ reduction to CH ₄ on iron porphyrin supported on atomically thin defective titanium dioxide. Catalysis Science and Technology, 2021, 11, 6103-6111.	4.1	13
112	Antimonite oxidation by microbial extracellular superoxide in Pseudomonas sp. SbB1. Geochimica Et Cosmochimica Acta, 2022, 316, 122-134.	3.9	13
113	Identifying semi-volatile contaminants in fish from Niyang River, Tibetan Plateau. Environmental Earth Sciences, 2013, 68, 1065-1072.	2.7	12
114	Acidity-dependent mobilization of antimony and arsenic in sediments near a mining area. Journal of Hazardous Materials, 2022, 426, 127790.	12.4	12
115	Genome Sequence of the Aerobic Arsenate-Reducing Bacterium <i>Pantoea</i> sp. Strain IMH. Genome Announcements, 2014, 2, .	0.8	11
116	Rapid detection of 2,2′,4,4′â€ŧetrabromodiphenyl ether (BDEâ€47) using a portable Au olloid SERS senso Journal of Raman Spectroscopy, 2014, 45, 745-749.	^{Dr} 2.5	11
117	Historical record of anthropogenic polycyclic aromatic hydrocarbons in a lake sediment from the southern Tibetan Plateau. Environmental Geochemistry and Health, 2018, 40, 1899-1906.	3.4	11
118	New insights into microbial-mediated synthesis of Au@biolayer nanoparticles. Environmental Science: Nano, 2018, 5, 1757-1763.	4.3	11
119	Remarkable surface-enhanced Raman scattering on self-assembled {201} anatase. Journal of Materials Chemistry C, 2019, 7, 14239-14244.	5.5	11
120	Oxygen vacancy modulated interface chemistry: identifying iron(<scp>iv</scp>) in heterogeneous Fenton reaction. Environmental Science: Nano, 2021, 8, 978-985.	4.3	11
121	Asenic removal from groundwater using granular chitosan-titanium adsorbent. Journal of Environmental Sciences, 2022, 112, 202-209.	6.1	11
122	Dynamic adsorption process of phthalate at goethite/aqueous interface: An ATR-FTIR study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 504-509.	4.7	10
123	Arsenic resistance strategy in Pantoea sp. IMH: Organization, function and evolution of ars genes. Scientific Reports, 2016, 6, 39195.	3.3	10
124	Transcriptome analysis of silver, palladium, and selenium stresses in Pantoea sp. IMH. Chemosphere, 2018, 208, 50-58.	8.2	10
125	TiO ₂ Facets Shaped by Concentration-Dependent Surface Diffusion of Dopamine. Journal of Physical Chemistry Letters, 2019, 10, 898-903.	4.6	10
126	New Mobilization Pathway of Antimonite: Thiolation and Oxidation by Dissimilatory Metal-Reducing Bacteria via Elemental Sulfur Respiration. Environmental Science & Technology, 2022, 56, 652-659.	10.0	10

#	Article	IF	CITATIONS
127	3D printing of TiO2 nano particles containing macrostructures for As(III) removal in water. Science of the Total Environment, 2022, 815, 152754.	8.0	10
128	Evaluating adsorption media for simultaneous removal of arsenate and cadmium from metallurgical wastewater. Journal of Environmental Chemical Engineering, 2016, 4, 2795-2801.	6.7	9
129	Hydration of TiO ₂ Facets Regulates As(III) Adsorption: DFT and DRIFTS Study. Langmuir, 2022, 38, 275-281.	3.5	9
130	Rapid onâ€site separation of As(III) and As(V) in waters using a disposable thiolâ€modified sand cartridge. Environmental Toxicology and Chemistry, 2014, 33, 1692-1696.	4.3	8
131	Reduction of adsorbed As(V) on nano-TiO 2 by sulfate-reducing bacteria. Science of the Total Environment, 2017, 598, 839-846.	8.0	8
132	Mobilization of arsenic on nano-TiO2 in soil columns with sulfate reducing bacteria. Environmental Pollution, 2018, 234, 762-768.	7.5	8
133	Rethinking anaerobic As(III) oxidation in filters: Effect of indigenous nitrate respirers. Chemosphere, 2018, 196, 223-230.	8.2	8
134	Oxidation of Arsenite by Epoxy Group on Reduced Graphene Oxide/Metal Oxide Composite Materials. Advanced Science, 2020, 7, 2001928.	11.2	8
135	Mechanistic study of antimonate reduction by Escherichia coli W3110. Environmental Pollution, 2021, 291, 118258.	7.5	8
136	Thiolation of trimethylantimony: Identification and structural characterization. Journal of Hazardous Materials, 2022, 423, 127259.	12.4	6
137	Arsenic biotransformation in industrial wastewater treatment residue: Effect of co-existing Shewanella sp. ANA-3 and MR-1. Journal of Environmental Sciences, 2022, 118, 14-20.	6.1	6
138	On-site detection of multiple extracellular antibiotic resistance genes using SERS. Sensors and Actuators B: Chemical, 2022, 369, 132262.	7.8	6
139	Color Centers on Hydrogenated TiO ₂ Facets Unlock Fluorescence Imaging. Journal of Physical Chemistry Letters, 2020, 11, 9485-9492.	4.6	5
140	Structural and mechanistic study of antimonite complexation with organic ligands at the goethite-water interface. Chemosphere, 2022, 301, 134682.	8.2	5
141	Prevalence of antibiotic resistance genes in cell culture liquid waste and the virulence assess for isolated resistant strains. Environmental Science and Pollution Research, 2019, 26, 32040-32049.	5.3	4
142	Speciation, leachability and bioaccessibility of tungsten in tungsten ore processing residue. Chemosphere, 2022, 302, 134856.	8.2	4
143	Preparation of activated carbon (AC)-loaded TiO2 adsorbent. Rare Metals, 2011, 30, 217-220.	7.1	3
144	Core–shell AuFe@FeO -CFC as electrochemical sensor for trace antimony analysis. Sensors and Actuators B: Chemical, 2020, 319, 128322.	7.8	3

9

#	Article	IF	CITATIONS
145	Identification and Characterization of a Au(III) Reductase from <i>Erwinia</i> sp. IMH. Jacs Au, 2022, 2, 1435-1442.	7.9	3
146	Preparation and characterization of porous TiO2 with La2O3 load. Rare Metals, 2011, 30, 221-224.	7.1	2
147	Environmental geochemistry of thioantimony: formation, structure and transformation as compared with thioarsenic. Environmental Sciences: Processes and Impacts, 2021, , .	3.5	2
148	Thiolated Methylantimonials: A New Organoantimony Group Identified in Mouse and Human Urines. Environmental Science and Technology Letters, 2022, 9, 792-797.	8.7	2
149	ARSENIC LEACHABILTY IN WATER TREATMENT SLUDGE. Proceedings of the Water Environment Federation, 2003, 2003, 167-177.	0.0	1
150	X-ray absorption near-edge spectroscopy of antimony complexed with organic molecules: a theoretical interpretation. Journal of Analytical Atomic Spectrometry, 2022, 37, 1578-1586.	3.0	1
151	Nanoparticles for Treatment of Arsenic. , 2009, , 116-136.		0
152	Insights into Interactions of Propranolol with Nano TiO2. ACS Symposium Series, 2013, , 101-120.	0.5	0