Amy K Reeve

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4537656/publications.pdf Version: 2024-02-01

AMY K REFVE

#	Article	IF	CITATIONS
1	High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nature Genetics, 2006, 38, 515-517.	9.4	1,363
2	Ageing and Parkinson's disease: Why is advancing age the biggest risk factor?. Ageing Research Reviews, 2014, 14, 19-30.	5.0	681
3	What causes mitochondrial DNA deletions in human cells?. Nature Genetics, 2008, 40, 275-279.	9.4	334
4	Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Annals of Neurology, 2011, 69, 481-492.	2.8	306
5	Mitochondrial Dysfunction in Parkinson's Disease—Cause or Consequence?. Biology, 2019, 8, 38.	1.3	153
6	Mitochondrial DNA Mutations in Disease, Aging, and Neurodegeneration. Annals of the New York Academy of Sciences, 2008, 1147, 21-29.	1.8	129
7	Nature of Mitochondrial DNA Deletions in Substantia Nigra Neurons. American Journal of Human Genetics, 2008, 82, 228-235.	2.6	123
8	Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson's disease. Npj Parkinson's Disease, 2018, 4, 9.	2.5	92
9	The rise and rise of mitochondrial DNA mutations. Open Biology, 2020, 10, 200061.	1.5	89
10	The Impact of Pathogenic Mitochondrial DNA Mutations on Substantia Nigra Neurons. Journal of Neuroscience, 2013, 33, 10790-10801.	1.7	75
11	Age related mitochondrial degenerative disorders in humans. Biotechnology Journal, 2008, 3, 750-756.	1.8	59
12	3D neuronal mitochondrial morphology in axons, dendrites, and somata of the aging mouse hippocampus. Cell Reports, 2021, 36, 109509.	2.9	52
13	Subcellular origin of mitochondrial DNA deletions in human skeletal muscle. Annals of Neurology, 2018, 84, 289-301.	2.8	47
14	Relationship Between Mitochondria and Î \pm -Synuclein. Archives of Neurology, 2012, 69, 385.	4.9	43
15	Complex mitochondrial DNA rearrangements in individual cells from patients with sporadic inclusion body myositis. Nucleic Acids Research, 2016, 44, 5313-5329.	6.5	37
16	Investigation of mitochondrial biogenesis defects in single substantia nigra neurons using post-mortem human tissues. Neurobiology of Disease, 2020, 134, 104631.	2.1	33
17	Preferential amplification of a human mitochondrial DNA deletion in vitro and in vivo. Scientific Reports, 2018, 8, 1799.	1.6	30
18	Quantitative quadruple-label immunofluorescence of mitochondrial and cytoplasmic proteins in single neurons from human midbrain tissue. Journal of Neuroscience Methods, 2014, 232, 143-149.	1.3	28

Αμγ Κ Reeve

#	Article	IF	CITATIONS
19	The low abundance of clonally expanded mitochondrial DNA point mutations in aged substantia nigra neurons. Aging Cell, 2009, 8, 496-498.	3.0	26
20	lmaging mass cytometry reveals generalised deficiency in OXPHOS complexes in Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 39.	2.5	17
21	Understanding mitochondrial DNA maintenance disorders at the single muscle fibre level. Nucleic Acids Research, 2019, 47, 7430-7443.	6.5	16
22	Astrocytic Changes in Mitochondrial Oxidative Phosphorylation Protein Levels in Parkinson's Disease. Movement Disorders, 2022, 37, 302-314.	2.2	14
23	No excess of mitochondrial DNA deletions within muscle in progressive multiple sclerosis. Multiple Sclerosis Journal, 2013, 19, 1858-1866.	1.4	13
24	Impaired Fast Network Oscillations and Mitochondrial Dysfunction in a Mouse Model of Alpha-synucleinopathy (A30P). Neuroscience, 2018, 377, 161-173.	1.1	12
25	Complex I reductions in the nucleus basalis of Meynert in Lewy body dementia: the role of Lewy bodies. Acta Neuropathologica Communications, 2020, 8, 103.	2.4	10
26	Hippocampal network hyperexcitability in young transgenic mice expressing human mutant alpha-synuclein. Neurobiology of Disease, 2021, 149, 105226.	2.1	10