Jing Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4536858/publications.pdf

Version: 2024-02-01

73	4,104	41 h-index	63
papers	citations		g-index
73	73	73	4393
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A disposable ratiometric electrochemical aptasensor with exonuclease I-powered target recycling amplification for highly sensitive detection of aflatoxin B1. Sensors and Actuators B: Chemical, 2022, 355, 131238.	7.8	34
2	An upgraded 2D nanosheet-based FRET biosensor: insights into avoiding background and eliminating effects of background fluctuations. Chemical Communications, 2022, 58, 467-470.	4.1	18
3	Turning on Highâ€Sensitive Organic Electrochemical Transistorâ€Based Photoelectrochemicalâ€Type Sensor over Modulation of Feâ€MOF by PEDOT. Advanced Functional Materials, 2022, 32, .	14.9	26
4	Region separation type bio-photoelectrode based all-solid-state self-powered aptasensor for ochratoxin A and aflatoxin B1 detection. Sensors and Actuators B: Chemical, 2022, 364, 131897.	7.8	6
5	Simulation design of a binding-pocket structure of natural enzymes in MOFs for enhanced catalytic activity. Chemical Communications, 2022, 58, 6745-6748.	4.1	4
6	Hierarchical Regulation of LaMnO ₃ Dual-Pathway Strategy for Excellent Room-Temperature Organocatalytic Oxidation Performance. Inorganic Chemistry, 2022, 61, 7459-7466.	4.0	4
7	2D/2D heterojunction of ZnIn2S4/N-doped graphene nanosheets for off-type high-performance photoelectrochemical aptasensor. Sensors and Actuators B: Chemical, 2022, 367, 132033.	7.8	7
8	One-step hydrothermal synthesis of telluride molybdenum/reduced graphene oxide with Schottky barrier for fabricating label-free photoelectrochemical profenofos aptasensor. Chemical Engineering Journal, 2021, 407, 127213.	12.7	33
9	Closed Bipolar Electrode Based Fluorescence Visualization Biosensor for Anti-interference Detection of T-2 toxin. Chemical Communications, 2021, 57, 6511-6513.	4.1	2
10	Controlling the ligands of CdZnTe quantum dots to design a super simple ratiometric fluorescence nanosensor for silver ion detection. Analyst, The, 2021, 146, 5747-5755.	3. 5	2
11	A FRET aptasensor for sensitive detection of aflatoxin B1 based on a novel donor–acceptor pair between ZnS quantum dots and Ag nanocubes. Analytical Methods, 2021, 13, 462-468.	2.7	14
12	A Multiplexed Self-Powered Dual-Photoelectrode Biosensor for Detecting Dual Analytes Based on an Electron-Transfer-Regulated Conversion Strategy. Analytical Chemistry, 2021, 93, 6214-6222.	6.5	38
13	Rapid Potentiometric Detection of Chemical Oxygen Demand Using a Portable Self-Powered Sensor Chip. Analytical Chemistry, 2021, 93, 8393-8398.	6.5	15
14	Novel Anti-Interference Strategy for a Self-Powered Sensor: Mediator-Free and Biospecific Photocathode Interface. Analytical Chemistry, 2021, 93, 12690-12697.	6.5	41
15	A smart material built upon the photo-thermochromic effect and its use for managing indoor temperature. Chemical Communications, 2021, 57, 8628-8631.	4.1	4
16	High-Throughput Detection of Multiple Contaminants Based on Portable Photoelectrochromic Sensor Chip. Analytical Chemistry, 2021, 93, 14053-14058.	6.5	23
17	Highly active metal-free peroxidase mimics based on oxygen-doped carbon nitride by promoting electron transfer capacity. Chemical Communications, 2020, 56, 1409-1412.	4.1	21
18	Gold nanoparticles mediated designing of versatile aptasensor for colorimetric/electrochemical dual-channel detection of aflatoxin B1. Biosensors and Bioelectronics, 2020, 166, 112443.	10.1	78

#	Article	IF	CITATIONS
19	Controlling over the terminal functionalities of thiol-capped CdZnTe QDs to develop fluorescence nanosensor for selective discrimination and determination of Fe(II) ions. Sensors and Actuators B: Chemical, 2020, 322, 128636.	7.8	20
20	Bi-color FRET from two nano-donors to a single nano-acceptor: A universal aptasensing platform for simultaneous determination of dual targets. Chemical Engineering Journal, 2020, 401, 126017.	12.7	88
21	Simultaneous detection of TNOS and P35S in transgenic soybean based on magnetic bicolor fluorescent probes. Talanta, 2020, 212, 120764.	5.5	6
22	A multiplexed FRET aptasensor for the simultaneous detection of mycotoxins with magnetically controlled graphene oxide/Fe ₃ O ₄ as a single energy acceptor. Analyst, The, 2019, 144, 6004-6010.	3.5	44
23	A semiconductor quantum dot-based ratiometric electrochemical aptasensor for the selective and reliable determination of aflatoxin B1. Analyst, The, 2019, 144, 4772-4780.	3.5	30
24	Porous Gold Nanocages: High Atom Utilization for Thiolated Aptamer Immobilization to Well Balance the Simplicity, Sensitivity, and Cost of Disposable Aptasensors. Analytical Chemistry, 2019, 91, 8660-8666.	6.5	45
25	Engineered nanoparticles disguised as macrophages for trapping lipopolysaccharide and preventing endotoxemia. Biomaterials, 2019, 189, 60-68.	11.4	60
26	Target-driven switch-on fluorescence aptasensor for trace aflatoxin B1 determination based on highly fluorescent ternary CdZnTe quantum dots. Analytica Chimica Acta, 2019, 1047, 163-171.	5.4	58
27	A sensitive Potentiometric resolved ratiometric Photoelectrochemical aptasensor for Escherichia coli detection fabricated with non-metallic nanomaterials. Biosensors and Bioelectronics, 2018, 106, 57-63.	10.1	97
28	Magnetically controlled fluorescence aptasensor for simultaneous determination of ochratoxin A and aflatoxin B1. Analytica Chimica Acta, 2018, 1019, 119-127.	5.4	74
29	Fabrication of magnetically assembled aptasensing device for label-free determination of aflatoxin B1 based on EIS. Biosensors and Bioelectronics, 2018, 108, 69-75.	10.1	83
30	Multiple signal-amplification via Ag and TiO2 decorated 3D nitrogen doped graphene hydrogel for fabricating sensitive label-free photoelectrochemical thrombin aptasensor. Biosensors and Bioelectronics, 2018, 101, 14-20.	10.1	112
31	Fluorescent "on-off-on―switching sensor based on CdTe quantum dots coupled with multiwalled carbon nanotubes@graphene oxide nanoribbons for simultaneous monitoring of dual foreign DNAs in transgenic soybean. Biosensors and Bioelectronics, 2017, 92, 26-32.	10.1	46
32	A disposable aptasensing device for label-free detection of fumonisin B1 by integrating PDMS film-based micro-cell and screen-printed carbon electrode. Sensors and Actuators B: Chemical, 2017, 251, 192-199.	7.8	43
33	Engineering of Heterojunction-Mediated Biointerface for Photoelectrochemical Aptasensing: Case of Direct Z-Scheme CdTe-Bi ₂ S ₃ Heterojunction with Improved Visible-Light-Driven Photoelectrical Conversion Efficiency. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18369-18376.	8.0	94
34	AgBr nanoparticles/3D nitrogen-doped graphene hydrogel for fabricating all-solid-state luminol-electrochemiluminescence Escherichia coli aptasensors. Biosensors and Bioelectronics, 2017, 97, 377-383.	10.1	105
35	A novel universal colorimetric sensor for simultaneous dual target detection through DNA-directed self-assembly of graphene oxide and magnetic separation. Chemical Communications, 2017, 53, 7096-7099.	4.1	29
36	Design of a Dual Channel Self-Reference Photoelectrochemical Biosensor. Analytical Chemistry, 2017, 89, 10133-10136.	6.5	86

#	Article	IF	CITATIONS
37	Magneto-controlled aptasensor for simultaneous electrochemical detection of dual mycotoxins in maize using metal sulfide quantum dots coated silica as labels. Biosensors and Bioelectronics, 2017, 89, 802-809.	10.1	108
38	Fabricating photoelectrochemical aptasensor for selectively monitoring microcystin-LR residues in fish based on visible light-responsive BiOBr nanoflakes/N-doped graphene photoelectrode. Biosensors and Bioelectronics, 2016, 81, 242-248.	10.1	74
39	One-pot hydrothermal route to fabricate nitrogen doped graphene/Ag-TiO2: Efficient charge separation, and high-performance "on-off-on―switch system based photoelectrochemical biosensing. Biosensors and Bioelectronics, 2016, 83, 149-155.	10.1	51
40	Building a Three-Dimensional Nano–Bio Interface for Aptasensing: An Analytical Methodology Based on Steric Hindrance Initiated Signal Amplification Effect. Analytical Chemistry, 2016, 88, 9622-9629.	6.5	51
41	Fabrication of I-cysteine-capped CdTe quantum dots based ratiometric fluorescence nanosensor for onsite visual determination of trace TNT explosive. Analytica Chimica Acta, 2016, 946, 80-87.	5.4	29
42	A homogeneous assay for highly sensitive detection of CaMV35S promoter in transgenic soybean by $f\tilde{A}\P$ rster resonance energy transfer between nitrogen-doped graphene quantum dots and Ag nanoparticles. Analytica Chimica Acta, 2016, 948, 90-97.	5.4	28
43	A novel photoelectrochemical immunosensor by integration of nanobody and TiO 2 nanotubes for sensitive detection of serum cystatin C. Analytica Chimica Acta, 2016, 902, 107-114.	5.4	31
44	Colorimetric aptasensing of ochratoxin A using Au@Fe 3 O 4 nanoparticles as signal indicator and magnetic separator. Biosensors and Bioelectronics, 2016, 77, $1183-1191$.	10.1	159
45	One-pot synthesis of BiPO ₄ functionalized reduced graphene oxide with enhanced photoelectrochemical performance for selective and sensitive detection of chlorpyrifos. Journal of Materials Chemistry A, 2015, 3, 13671-13678.	10.3	78
46	Multiwalled carbon nanotube@reduced graphene oxide nanoribbon heterostructure: synthesis, intrinsic peroxidase-like catalytic activity, and its application in colorimetric biosensing. Journal of Materials Chemistry B, 2015, 3, 1624-1632.	5.8	54
47	Amplified solid-state electrochemiluminescence detection of cholesterol in near-infrared range based on CdTe quantum dots decorated multiwalled carbon nanotubes@reduced graphene oxide nanoribbons. Biosensors and Bioelectronics, 2015, 73, 221-227.	10.1	49
48	Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosensors and Bioelectronics, 2015, 70, 122-129.	10.1	127
49	Magnetic-fluorescent-targeting multifunctional aptasensorfor highly sensitive and one-step rapid detection of ochratoxin A. Biosensors and Bioelectronics, 2015, 68, 783-790.	10.1	92
50	Bioavailability and Bioavailable Forms of Collagen after Oral Administration to Rats. Journal of Agricultural and Food Chemistry, 2015, 63, 3752-3756.	5.2	34
51	Nitrogen-Doped Graphene Quantum Dots@SiO ₂ Nanoparticles as Electrochemiluminescence and Fluorescence Signal Indicators for Magnetically Controlled Aptasensor with Dual Detection Channels. ACS Applied Materials & Detection Channels & Detection Channels & Detection Channels &	8.0	104
52	Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions. Analytica Chimica Acta, 2015, 888, 173-181.	5.4	44
53	A FRET-based ratiometric fluorescent aptasensor for rapid and onsite visual detection of ochratoxin A. Analyst, The, 2015, 140, 7434-7442.	3.5	49
54	Onsite naked eye determination of cysteine and homocysteine using quencher displacement-induced fluorescence recovery of the dual-emission hybrid probes with desired intensity ratio. Biosensors and Bioelectronics, 2015, 65, 83-90.	10.1	79

#	Article	IF	CITATIONS
55	Visible light photoelectrochemical sensor for ultrasensitive determination of dopamine based on synergistic effect of graphene quantum dots and TiO 2 nanoparticles. Analytica Chimica Acta, 2015, 853, 258-264.	5.4	148
56	Enhanced electrochemiluminescence sensing platform using nitrogen-doped graphene as a novel two-dimensional mat of silver nanoparticles. Talanta, 2015, 132, 146-149.	5.5	15
57	A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide. Biosensors and Bioelectronics, 2015, 65, 39-46.	10.1	123
58	Functionalization of Nitrogen-Doped Carbon Nanotubes by 1-Pyrenebutyric Acid and Its Application for Biosensing. IEEE Sensors Journal, 2014, 14, 2341-2346.	4.7	4
59	Preparation of hierarchical mesoporous Co3O4 bundle using [Bmim]TA as a multi-role starting material and its supercapacitor application. Monatshefte FA $\frac{1}{4}$ r Chemie, 2014, 145, 19-22.	1.8	8
60	Polyoxometalate@magnetic graphene as versatile immobilization matrix of Ru(bpy)32+ for sensitive magneto-controlled electrochemiluminescence sensor and its application in biosensing. Biosensors and Bioelectronics, 2014, 57, 149-156.	10.1	38
61	Amplified impedimetric aptasensor based on gold nanoparticles covalently bound graphene sheet for the picomolar detection of ochratoxin A. Analytica Chimica Acta, 2014, 806, 128-135.	5.4	115
62	Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy. Bioelectrochemistry, 2014, 96, 7-13.	4.6	65
63	Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosensors and Bioelectronics, 2014, 54, 273-278.	10.1	215
64	Reactable ionic liquid assisted preparation of porous Co3O4 nanostructures with enhanced supercapacitive performance. CrystEngComm, 2014, 16, 2395.	2.6	32
65	Graphitic Carbon Nitride Nanorods for Photoelectrochemical Sensing of Trace Copper(II) lons. European Journal of Inorganic Chemistry, 2014, 2014, 3665-3673.	2.0	51
66	Highly sensitive impedimetric aptasensor based on covalent binding of gold nanoparticles on reduced graphene oxide with good dispersity and high density. Analyst, The, 2014, 139, 5587-5593.	3.5	41
67	Magnetically Separable Fe3O4 Nanoparticles-Decorated Reduced Graphene Oxide Nanocomposite for Catalytic Wet Hydrogen Peroxide Oxidation. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 907-916.	3.7	50
68	One-pot synthesis of CdxZn1â^'xSâ€"reduced graphene oxide nanocomposites with improved photoelectrochemical performance for selective determination of Cu2+. RSC Advances, 2013, 3, 14451.	3.6	38
69	A high-throughput homogeneous immunoassay based on Förster resonance energy transfer between quantum dots and gold nanoparticles. Analytica Chimica Acta, 2013, 763, 43-49.	5.4	57
70	Visible-light photocatalytic efficiencies and anti-photocorrosion behavior of CdS/graphene nanocomposites: Evaluation using methylene blue degradation. Chinese Journal of Catalysis, 2013, 34, 1876-1882.	14.0	42
71	Simultaneous detection of dual proteins using quantum dots coated silica nanoparticles as labels. Biosensors and Bioelectronics, 2011, 28, 314-319.	10.1	81
72	Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy)32+-encapsulated silica nanosphere labels. Analytica Chimica Acta, 2010, 665, 32-38.	5.4	87

#	Article	IF	CITATIONS
73	Versatile Immunosensor Using a Quantum Dot Coated Silica Nanosphere as a Label for Signal Amplification. Analytical Chemistry, 2010, 82, 6422-6429.	6.5	163