Hidemi Tsuchida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4533414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Waveform measurement technique for phase/frequency-modulated lights based on self-heterodyne interferometry. Optics Express, 2017, 25, 4793.	3.4	6
2	Optical fibre chromatic dispersion measurement using incoherent heterodyne interferometry. Electronics Letters, 2016, 52, 645-646.	1.0	4
3	Dispersion-tolerant two-photon Michelson interferometer using telecom-band frequency-entangled photon pairs generated by spontaneous parametric downconversion. Optics Communications, 2015, 342, 83-89.	2.1	0
4	Telecom-band two-photon Michelson interferometer using frequency entangled photon pairs generated by spontaneous parametric down-conversion. Optics Communications, 2014, 313, 333-336.	2.1	2
5	Direct Observation of Cross-Phase-Modulation-Induced Nonlinear Phase Noise. Applied Physics Express, 2013, 6, 062203.	2.4	0
6	Limitation and improvement in the performance of recirculating delayed self-heterodyne method for high-resolution laser lineshape measurement. Optics Express, 2012, 20, 11679.	3.4	12
7	Characterization of optical resonators with an incoherent light. Optics Express, 2012, 20, 29347.	3.4	7
8	Quantum state tomography using photon number counting to evaluate entanglement generated by spontaneous parametric downconversion. , 2012, , .		0
9	Polarization-based entanglement swapping at the telecommunication wavelength using spontaneous parametric down-conversion photon-pair sources. Physical Review A, 2012, 85, .	2.5	8
10	Thin Gold Covered Titanium Transition Edge Sensor for Optical Measurement. Journal of Low Temperature Physics, 2012, 167, 815-821.	1.4	8
11	Evaluation of polarization entanglement generated by spontaneous parametric downconversion using photon number counting. Optics Communications, 2012, 285, 1297-1301.	2.1	2
12	Evaluation of polarization entanglement generated by pulsed spontaneous parametric down-conversion with multi-pairs using four single-photon detectors for quantum state tomography. Optics Communications, 2012, 285, 3502-3506.	2.1	0
13	Characterization of White and Flicker Frequency Modulation Noise in Narrow-Linewidth Laser Diodes. IEEE Photonics Technology Letters, 2011, 23, 727-729.	2.5	13
14	Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling. Optics Express, 2011, 19, 870.	3.4	201
15	Laser frequency modulation noise measurement by recirculating delayed self-heterodyne method. Optics Letters, 2011, 36, 681.	3.3	35
16	Titanium Superconducting Photon-Number-Resolving Detector. IEEE Transactions on Applied Superconductivity, 2011, 21, 241-245.	1.7	22
17	Entanglement Swapping Demonstration in the Telecom Band Using Polarization-Entangled Photon Pairs. , 2011, , .		0
18	Wavelength-multiplexed entanglement distribution. Optical Fiber Technology, 2010, 16, 225-235.	2.7	21

#	Article	IF	CITATIONS
19	Accidental Coincidence Counts Observed in Mandel Dip Measurement Using Independently Produced Photon Pairs at 1550 nm. Japanese Journal of Applied Physics, 2010, 49, 122802.	1.5	2
20	Hongâ^'Ouâ^'Mandel dip measurements of polarization-entangled photon pairs at 1550 nm. Optics Express, 2010, 18, 8182.	3.4	14
21	Time division vector optical sampling for ultrafast amplitude/phase modulation device characterization. Optics Letters, 2010, 35, 3183.	3.3	Ο
22	Quantum Interference Measurement for Realizing a Polarization-Based Quantum Relay at 1550 nm. , 2010, , .		0
23	Excess noise in bandwidth-resource-efficient entanglement distribution. , 2009, , .		Ο
24	Titanium TES based photon number resolving detectors with 1 MHz counting rate and 65% quantum efficiency. Proceedings of SPIE, 2009, , .	0.8	6
25	Photon number resolving detection with high speed and high quantum efficiency. Metrologia, 2009, 46, S288-S292.	1.2	47
26	Simultaneous Prescaled Clock Recovery and Serial-to-Parallel Conversion of Data Signals Using a Polarization Modulator-Based Optoelectronic Oscillator. Journal of Lightwave Technology, 2009, 27, 3777-3782.	4.6	94
27	All-Optical Demultiplexing from 160 to 40/80 Gb/s Using Mach-Zehnder Switches Based on Intersubband Transition of InGaAs/AlAsSb Coupled Double Quantum Wells. IEICE Transactions on Electronics, 2009, E92-C, 187-193.	0.6	11
28	High Speed Photon Number Resolving Detector withÂTitanium Transition Edge Sensor. Journal of Low Temperature Physics, 2008, 151, 100-105.	1.4	37
29	Subharmonic Optoelectronic Oscillator. IEEE Photonics Technology Letters, 2008, 20, 1509-1511.	2.5	18
30	Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide. Optics Express, 2008, 16, 12460.	3.4	52
31	Distribution of polarization-entangled photonpairs produced via spontaneous parametric down-conversion within a local-area fiber network: Theoretical model and experiment. Optics Express, 2008, 16, 14512.	3.4	33
32	Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution. Optics Express, 2008, 16, 16052.	3.4	47
33	Wavelength-multiplexed distribution of highly entangled photon-pairs over optical fiber. Optics Express, 2008, 16, 22099.	3.4	40
34	Broadband source of polarization-entangled photon-pairs suitable for multi-channel wavelength-multiplexed entanglement distribution. , 2008, , .		0
35	Simulation of Cross Phase Modulation in Intersubband Transition of InGaAs/AlAs/AlAsSb Coupled Quantum Wells Based on Vector Signal Analysis of Electrical Signals. Japanese Journal of Applied Physics, 2008, 47, 8434-8439.	1.5	1
	Wayslangth multiplayed antenglament distribution over 10 km of fiber 2008		

36 Wavelength-multiplexed entanglement distribution over 10 km of fiber. , 2008, , .

0

#	Article	IF	CITATIONS
37	Polarisation-entangled photon-pair source at 1550â€nm using 1â€mm-long PPLN waveguide in fibre-loop configuration. Electronics Letters, 2007, 43, 1376.	1.0	7
38	Polarization-entangled photon source based on the fiber loop configuration in the telecom wavelength band. , 2007, , .		0
39	All-optical demultiplexing of 160–10Gbitâ^•s signals with Mach-Zehnder interferometric switch utilizing intersubband transition in InGaAsâ^•AlAsâ^•AlAsSb quantum well. Applied Physics Letters, 2007, 91, 221115.	3.3	62
40	Discharge Pulse Counting for Low-Noise Single-Photon Detection at 1550 nm Using InGaAs Avalanche Photodiode Cooled to 130 K. Japanese Journal of Applied Physics, 2007, 46, 220-222.	1.5	4
41	Ultrafast All-Optical Refractive Index Modulation in Intersubband Transition Switch Using InGaAs/AlAs/AlAsSb Quantum Well. Japanese Journal of Applied Physics, 2007, 46, L157-L160.	1.5	24
42	Cross-phase-modulation-based wavelength conversion using intersubband transition in InGaAs/AlAs/AlAsSb coupled quantum wells. Optics Letters, 2007, 32, 751.	3.3	68
43	Quantum efficiency measurements by bidirectional coincidence counting of correlated photon pairs. Optics Letters, 2007, 32, 3176.	3.3	5
44	160-gb/s optical clock recovery using a regeneratively mode-locked laser diode. IEEE Photonics Technology Letters, 2006, 18, 1687-1689.	2.5	18
45	Timing noise measurement of 320 GHz optical pulses using an improved optoelectronic harmonic mixer. Optics Letters, 2006, 31, 628.	3.3	3
46	40-GHz subharmonic optical clock recovery using an injection-locked optoelectronic oscillator. IEICE Electronics Express, 2006, 3, 373-378.	0.8	3
47	Timing Adjustment of Incoming Photons in Gated-Mode Single-Photon Detection at 1550 nm. Japanese Journal of Applied Physics, 2006, 45, L854-L856.	1.5	0
48	Long-distance test of Bell's inequality in 1550 nm band using polarisation entanglement. Electronics Letters, 2005, 41, 540.	1.0	1
49	Violation of Bell's Inequality in 1550 nm Band without Subtraction of Accidental Coincidences. Japanese Journal of Applied Physics, 2005, 44, L375-L377.	1.5	6
50	Reconstruction of Photon Number Distribution without Relying on Photon Number-Resolving Detector. Japanese Journal of Applied Physics, 2005, 44, 8004-8006.	1.5	1
51	40-Gb/s optical clock recovery using an injection-locked optoelectronic oscillator. IEEE Photonics Technology Letters, 2005, 17, 211-213.	2.5	69
52	Synchronization of Optical Pulses with Microwave Signals. The Review of Laser Engineering, 2005, 33, 373-377.	0.0	0
53	Gated-mode single-photon detection at 1550 nm by discharge pulse counting. Applied Physics Letters, 2004, 84, 3606-3608.	3.3	53
54	Generation of polarization-entangled photon pairs in 1550nm band by a fiber-optic two-photon interferometer. Applied Physics Letters, 2004, 85, 2457-2459.	3.3	32

#	Article	IF	CITATIONS
55	Evaluation of keyrates in unconditionally secure quantum key distribution taking account of the afterpulse effect of single-photon detectors. Electronics and Communications in Japan, 2004, 87, 38-45.	0.2	0
56	10.5 km Fiber-Optic Quantum Key Distribution at 1550 nm with a Key Rate of 45 kHz. Japanese Journal of Applied Physics, 2004, 43, L735-L737.	1.5	26
57	Two-Coherent-State Quantum Key Distribution Using a Large Reference Pulse for Security Enhancement. Optical Review, 2003, 10, 402-403.	2.0	Ο
58	Pulse-timing noise reduction of a mode-locked laser diode by incoherent addition. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 1081-1092.	2.9	4
59	Pulse timing-jitter reduction by incoherent addition. Optics Letters, 2003, 28, 474.	3.3	2
60	Generation of polarisation-entangled photon pairs at 1550â€nm using two PPLN waveguides. Electronics Letters, 2003, 39, 621.	1.0	77
61	Two-photon Interference at 1550 nm Using Two Periodically Poled Lithium Niobate Waveguides. Japanese Journal of Applied Physics, 2003, 42, 5652-5653.	1.5	3
62	A Method of Discarding After-Pulses in Single-Photon Detection for Quantum Key Distribution. Japanese Journal of Applied Physics, 2002, 41, 6016-6017.	1.5	15
63	Pulse Timing Stabilization of a Mode-Locked Laser Using an External Phase Modulator. Japanese Journal of Applied Physics, 2002, 41, 145-148.	1.5	3
64	Timing-jitter measurement of 78-GHz optical time-division multiplexed pulses by optoelectronic harmonic mixing. Optics Letters, 2002, 27, 2040.	3.3	7
65	Time-domain measurement of pulse-timing fluctuations in a mode-locked laser diode. IEEE Photonics Technology Letters, 2002, 14, 513-515.	2.5	10
66	Quantum efficiency evaluation method for gated-mode single-photon detector. Electronics Letters, 2002, 38, 1468.	1.0	13
67	A 1550 nm Single-Photon Detector Using a Thermoelectrically Cooled InGaAs Avalanche Photodiode. Japanese Journal of Applied Physics, 2001, 40, 200-201.	1.5	42
68	Highly Efficient Frequency Doubling with a KNbO3 Semi-Monolithic Resonator. Optical Review, 2000, 7, 22-24.	2.0	0
69	Timing-jitter reduction of a mode-locked Cr:LiSAF laser by simultaneous control of cavity length and pump power. Optics Letters, 2000, 25, 1475.	3.3	6
70	Time-interval analysis of laser-pulse-timing fluctuations. Optics Letters, 1999, 24, 1434.	3.3	18
71	Pulse timing stabilization of a mode-locked Cr:LiSAF laser. Optics Letters, 1999, 24, 1641.	3.3	30
72	Chirped-comb generation in frequency-shifted feedback laser diodes with a large frequency shift. Optics Communications, 1998, 155, 51-54.	2.1	19

#	Article	IF	CITATIONS
73	Wideband phase-noise measurement of mode-locked laser pulses by a demodulation technique. Optics Letters, 1998, 23, 286.	3.3	35
74	Correlation between amplitude and phase noise in a mode-locked Cr:LiSAF laser. Optics Letters, 1998, 23, 1686.	3.3	21
75	Generation of Tunable Amplitude-Squeezed Lights. Optical Review, 1996, 3, 309-311.	2.0	1
76	Generation of amplitude-squeezed light at 431 nm from a singly resonant frequency doubler. Optics Letters, 1995, 20, 2240.	3.3	37
77	Frequency Doubling of Tunable Ti:sapphire Laser withKNbO3in External Cavity. Japanese Journal of Applied Physics, 1994, 33, 6190-6194.	1.5	8
78	Tunable, narrow-linewidth output from an injection-locked high-power AlGaAs laser diode array. Optics Letters, 1994, 19, 1741.	3.3	17
79	Frequency stabilization of a semiconductor laser using an external phase modulator. Optics Letters, 1992, 17, 49.	3.3	4
80	Simple method for producing quasiderivative signal of Fabry–Perot resonance. Electronics Letters, 1991, 27, 2222.	1.0	1
81	Simple technique for improving the resolution of the delayed self-heterodyne method. Optics Letters, 1990, 15, 640.	3.3	70
82	Polarimetric optical fiber sensor using a frequency stabilized semiconductor laser. Journal of Lightwave Technology, 1989, 7, 799-803.	4.6	4
83	Interference with a frequency-modulated semiconductor laser. Journal of Lightwave Technology, 1989, 7, 1906-1911.	4.6	5
84	Dual-sensor technique for extending the dynamic range of a fiber-optic interferometric sensor. Optics Letters, 1988, 13, 850.	3.3	4
85	Novel ring interferometer for frequency stabilization of semiconductor lasers. Applied Optics, 1988, 27, 302.	2.1	4
86	Demodulation scheme for polarimetric optical fibre sensors using derivative technique. Electronics Letters, 1988, 24, 938.	1.0	1
87	Frequency stabilisation of a modulated semiconductor laser. Electronics Letters, 1987, 23, 1147.	1.0	17
88	Comment: Intrinsic lineshape and FM response of modulated semiconductor lasers. Electronics Letters, 1986, 22, 91.	1.0	0
89	Wideband frequency scanning of a stabilised semiconductor laser. Electronics Letters, 1986, 22, 553-554.	1.0	8
90	Relation Between Frequency and Intensity Stabilities in AlGaAs Semiconductor Laser. Japanese Journal of Applied Physics, 1983, 22, 1152-1156.	1.5	15

#	Article	IF	CITATIONS
91	Limit of the Frequency Stability in AlGaAs Semiconductor Lasers. Japanese Journal of Applied Physics, 1983, 22, 1870-1875.	1.5	16
92	A Novel Technique for Measuring the Frequency Deviation of Semiconductor Lasers Under Direct Modulation. Japanese Journal of Applied Physics, 1983, 22, L19-L21.	1.5	19
93	Frequency Stabilization of AlGaAs Semiconductor Lasers with External Grating Feedback. Japanese Journal of Applied Physics, 1983, 22, L258-L260.	1.5	12
94	Achievements of the Quantum Noise Limited Frequency Stability in AlGaAs Semiconductor Laser. Japanese Journal of Applied Physics, 1983, 22, L496-L498.	1.5	9
95	High-Speed Frequency Stabilization of AlGaAs Semiconductor Laser. Japanese Journal of Applied Physics, 1983, 22, 1543-1545.	1.5	5
96	Frequency Stabilization of AlGaAs Semiconductor Laser to the Absorption Line of Water Vapor. Japanese Journal of Applied Physics, 1982, 21, L1-L3.	1.5	49
97	Frequency Stabilization of AlGaAs Semiconductor Laser Based on the85Rb-D2Line. Japanese Journal of Applied Physics, 1982, 21, L561-L563.	1.5	90
98	Frequency Stabilization of AlGaAs DH Lasers. Japanese Journal of Applied Physics, 1981, 20, L403-L406.	1.5	36
99	FREQUENCY STABILIZATION OF AlGaAs LASERS BASED ON THE H ₂ O AND Rb-D ₂ LINES. Journal De Physique Colloque, 1981, 42, C8-83-C8-88.	0.2	1
100	Frequency Stability Measurement of Feedback Stabilized AlGaAs DH Laser. Japanese Journal of Applied Physics, 1980, 19, L721-L724.	1.5	34
101	Semiconductor Optical Amplifier Based Ultrafast Signal Processing Devices. , 0, , 53-87.		1
102	Intersub-Band Transition All-Optical Gate Switches. , 0, , 155-200.		2