Akos T Kovacs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4533264/publications.pdf

Version: 2024-02-01

109321 138484 4,619 101 35 58 citations h-index g-index papers 135 135 135 4271 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<i>Bacillus velezensis</i> stimulates resident rhizosphere <i>Pseudomonas stutzeri</i> for plant health through metabolic interactions. ISME Journal, 2022, 16, 774-787.	9.8	125
2	Quantitative High-Throughput Screening Methods Designed for Identification of Bacterial Biocontrol Strains with Antifungal Properties. Microbiology Spectrum, 2022, 10, e0143321.	3.0	6
3	Bacillus cereus sensu lato biofilm formation and its ecological importance. Biofilm, 2022, 4, 100070.	3.8	21
4	Adaptation and phenotypic diversification of Bacillus thuringiensis biofilm are accompanied by fuzzy spreader morphotypes. Npj Biofilms and Microbiomes, 2022, 8, 27.	6.4	4
5	Experimental evolution of Bacillus subtilis on Arabidopsis thaliana roots reveals fast adaptation and improved root colonization. IScience, 2022, 25, 104406.	4.1	20
6	Physiological and transcriptional profiling of surfactin exerted antifungal effect against Candida albicans. Biomedicine and Pharmacotherapy, 2022, 152, 113220.	5.6	6
7	Complex extracellular biology drives surface competition during colony expansion in <i>Bacillus subtilis</i> . ISME Journal, 2022, 16, 2320-2328.	9.8	16
8	Molecular Aspects of Plant Growth Promotion and Protection by <i>Bacillus subtilis </i> Plant-Microbe Interactions, 2021, 34, 15-25.	2.6	134
9	Pervasive prophage recombination occurs during evolution of spore-forming <i>Bacilli</i> ISME Journal, 2021, 15, 1344-1358.	9.8	26
10	A circadian clock in a nonphotosynthetic prokaryote. Science Advances, 2021, 7, .	10.3	59
11	Quantitative image analysis of microbial communities with BiofilmQ. Nature Microbiology, 2021, 6, 151-156.	13.3	181
12	Genomic and Chemical Diversity of Bacillus subtilis Secondary Metabolites against Plant Pathogenic Fungi. MSystems, 2021, 6, .	3.8	55
13	Impact of Rap-Phr system abundance on adaptation of Bacillus subtilis. Communications Biology, 2021, 4, 468.	4.4	18
14	Phylogenetic Distribution of Secondary Metabolites in the Bacillus subtilis Species Complex. MSystems, 2021, 6, .	3.8	39
15	Bacillus subtilis biofilm formation and social interactions. Nature Reviews Microbiology, 2021, 19, 600-614.	28.6	213
16	Biofilm Dispersal for Spore Release in Bacillus subtilis. Journal of Bacteriology, 2021, 203, e0019221.	2.2	3
17	Deletion of Rapâ€Phr systems in <i>Bacillus subtilis</i> influences in vitro biofilm formation and plant root colonization. MicrobiologyOpen, 2021, 10, e1212.	3.0	13
18	Phages carry interbacterial weapons encoded by biosynthetic gene clusters. Current Biology, 2021, 31, 3479-3489.e5.	3.9	30

#	Article	IF	CITATIONS
19	Diversification of <scp><i>Bacillus subtilis</i></scp> during experimental evolution on <i><scp>A</scp>rabidopsis <scp>thaliana</scp></i> and the complementarity in root colonization of evolved subpopulations. Environmental Microbiology, 2021, 23, 6122-6136.	3.8	26
20	Adaptation of Bacillus thuringiensis to Plant Colonization Affects Differentiation and Toxicity. MSystems, 2021, 6, e0086421.	3.8	16
21	Complete Genome Sequences of Four Soil-Derived Isolates for Studying Synthetic Bacterial Community Assembly. Microbiology Resource Announcements, 2021, 10, e0084821.	0.6	6
22	Metal ions weaken the hydrophobicity and antibiotic resistance of Bacillus subtilis NCIB 3610 biofilms. Npj Biofilms and Microbiomes, 2020, 6, 1.	6.4	82
23	A fungal scent from the cheese. Environmental Microbiology, 2020, 22, 4524-4526.	3 . 8	2
24	Privatization of Biofilm Matrix in Structurally Heterogeneous Biofilms. MSystems, 2020, 5, .	3.8	27
25	Cheaters shape the evolution of phenotypic heterogeneity in <i>Bacillus subtilis</i> biofilms. ISME Journal, 2020, 14, 2302-2312.	9.8	23
26	Differential equation-based minimal model describing metabolic oscillations in <i>Bacillus subtilis</i> biofilms. Royal Society Open Science, 2020, 7, 190810.	2.4	8
27	Complete Genome Sequences of 13 Bacillus subtilis Soil Isolates for Studying Secondary Metabolite Diversity. Microbiology Resource Announcements, 2020, 9, .	0.6	13
28	Surfactin production is not essential for pellicle and root-associated biofilm development of Bacillus subtilis. Biofilm, 2020, 2, 100021.	3.8	33
29	Modelling population dynamics in a unicellular social organism community using a minimal model and evolutionary game theory. Open Biology, 2020, 10, 200206.	3.6	11
30	Secondary metabolites of <i>Bacillus subtilis</i> impact the assembly of soil-derived semisynthetic bacterial communities. Beilstein Journal of Organic Chemistry, 2020, 16, 2983-2998.	2.2	18
31	Biofilm: Introducing a new journal for the broad biofilm field. Biofilm, 2019, 1, 100003.	3.8	0
32	Depiction of secondary metabolites and antifungal activity of Bacillus velezensis DTU001. Synthetic and Systems Biotechnology, 2019, 4, 142-149.	3.7	46
33	Are There Circadian Clocks in Non-Photosynthetic Bacteria?. Biology, 2019, 8, 41.	2.8	26
34	Bacillus subtilis. Trends in Microbiology, 2019, 27, 724-725.	7.7	84
35	The Ectomycorrhizospheric Habitat of Norway Spruce and Tricholoma vaccinum: Promotion of Plant Growth and Fitness by a Rich Microorganismic Community. Frontiers in Microbiology, 2019, 10, 307.	3 . 5	19
36	Evolved Biofilm: Review on the Experimental Evolution Studies of Bacillus subtilis Pellicles. Journal of Molecular Biology, 2019, 431, 4749-4759.	4.2	57

#	Article	IF	Citations
37	Fungal hyphae colonization by Bacillus subtilis relies on biofilm matrix components. Biofilm, 2019, 1, 100007.	3.8	26
38	Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms. FEMS Microbiology Ecology, 2018, 94, .	2.7	33
39	Impaired competence in flagellar mutants of <i>Bacillus subtilis</i> is connected to the regulatory network governed by DegU. Environmental Microbiology Reports, 2018, 10, 23-32.	2.4	10
40	Collapse of genetic division of labour and evolution of autonomy in pellicle biofilms. Nature Microbiology, 2018, 3, 1451-1460.	13.3	51
41	Hampered motility promotes the evolution of wrinkly phenotype in Bacillus subtilis. BMC Evolutionary Biology, 2018, 18, 155.	3.2	16
42	Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development. Materials, 2018, 11, 157.	2.9	11
43	Division of Labor during Biofilm Matrix Production. Current Biology, 2018, 28, 1903-1913.e5.	3.9	203
44	Dissimilar pigment regulation in Serpula lacrymans and Paxillus involutus during inter-kingdom interactions. Microbiology (United Kingdom), 2018, 164, 65-77.	1.8	23
45	The Peculiar Functions of the Bacterial Extracellular Matrix. Trends in Microbiology, 2017, 25, 257-266.	7.7	180
46	De novo evolved interference competition promotes the spread of biofilm defectors. Nature Communications, 2017, 8, 15127.	12.8	60
47	Lysinibacillus fusiformis M5 Induces Increased Complexity in Bacillus subtilis 168 Colony Biofilms via Hypoxanthine. Journal of Bacteriology, 2017, 199, .	2.2	17
48	Sliding on the surface: bacterial spreading without an active motor. Environmental Microbiology, 2017, 19, 2537-2545.	3.8	71
49	Surfing of bacterial droplets: <i>Bacillus subtilis</i> sliding revisited. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8802.	7.1	12
50	Structural damage of Bacillus subtilis biofilms using pulsed laser interaction with gold thin films. Journal of Biophotonics, 2017, 10, 1043-1052.	2.3	1
51	Application of quercetin and its bio-inspired nanoparticles as anti-adhesive agents against Bacillus subtilis attachment to surface. Materials Science and Engineering C, 2017, 70, 753-762.	7.3	19
52	YsbA and LytST are essential for pyruvate utilization in <i>Bacillus subtilis</i> Lenvironmental Microbiology, 2017, 19, 83-94.	3.8	32
53	From Cell Death to Metabolism: Holin-Antiholin Homologues with New Functions. MBio, 2017, 8, .	4.1	22
54	Presence of Calcium Lowers the Expansion of Bacillus subtilis Colony Biofilms. Microorganisms, 2017, 5, 7.	3.6	33

#	Article	IF	CITATIONS
55	The Role of Functional Amyloids in Multicellular Growth and Development of Gram-Positive Bacteria. Biomolecules, 2017, 7, 60.	4.0	27
56	Draft Genome Sequence of the Soil Isolate Lysinibacillus fusiformis M5, a Potential Hypoxanthine Producer. Genome Announcements, $2016, 4, \ldots$	0.8	6
57	The global regulator CodY is required for the fitness of <i>Bacillus cereus </i> in various laboratory media and certain beverages. FEMS Microbiology Letters, 2016, 363, fnw126.	1.8	4
58	Laboratory Evolution of Microbial Interactions in Bacterial Biofilms. Journal of Bacteriology, 2016, 198, 2564-2571.	2.2	69
59	Unraveling the predator-prey relationship of Cupriavidus necator and Bacillus subtilis. Microbiological Research, 2016, 192, 231-238.	5.3	22
60	Monitoring Spatial Segregation in Surface Colonizing Microbial Populations. Journal of Visualized Experiments, 2016, , .	0.3	16
61	Bacterial differentiation via gradual activation of global regulators. Current Genetics, 2016, 62, 125-128.	1.7	40
62	The impact of manganese on biofilm development of Bacillus subtilis. Microbiology (United Kingdom), 2016, 162, 1468-1478.	1.8	41
63	Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium. Microbiology (United) Tj ETQq 11	0.784314 r 1.8	gBT/Overloc
64	Single Cell FRET Analysis for the Identification of Optimal FRET-Pairs in Bacillus subtilis Using a Prototype MEM-FLIM System. PLoS ONE, 2015, 10, e0123239.	2.5	12
65	A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis. MBio, 2015, 6, e00581.	4.1	89
66	Spatio-temporal Remodeling of Functional Membrane Microdomains Organizes the Signaling Networks of a Bacterium. PLoS Genetics, 2015, 11, e1005140.	3.5	39
67	Motility, Chemotaxis and Aerotaxis Contribute to Competitiveness during Bacterial Pellicle Biofilm Development. Journal of Molecular Biology, 2015, 427, 3695-3708.	4.2	127
68	<scp><i>B</i></scp> <i>scp><i>Aspergillus niger</i>hyphae results in mutually altered metabolism. Environmental Microbiology, 2015, 17, 2099-2113.</i>	3.8	112
69	Repeated triggering of sporulation in <i>Bacillus subtilis</i> selects against a protein that affects the timing of cell division. ISME Journal, 2014, 8, 77-87.	9.8	16
70	The YmdB Phosphodiesterase Is a Global Regulator of Late Adaptive Responses in Bacillus subtilis. Journal of Bacteriology, 2014, 196, 265-275.	2.2	69
71	Impact of spatial distribution on the development of mutualism in microbes. Frontiers in Microbiology, 2014, 5, 649.	3.5	32
72	Comparative genomics and transcriptomics analysis of experimentally evolved <i><scp>E</scp>scherichia coli</i> à€ <scp>MC</scp> 1000 in complex environments. Environmental Microbiology, 2014, 16, 856-870.	3.8	12

#	Article	lF	CITATIONS
73	From environmental signals to regulators: Modulation of biofilm development in Gramâ€positive bacteria. Journal of Basic Microbiology, 2014, 54, 616-632.	3.3	53
74	In Bacillus subtilis LutR is part of the global complex regulatory network governing the adaptation to the transition from exponential growth to stationary phase. Microbiology (United Kingdom), 2014, 160, 243-260.	1.8	15
75	Density of founder cells affects spatial pattern formation and cooperation in <i>Bacillus subtilis</i> biofilms. ISME Journal, 2014, 8, 2069-2079.	9.8	231
76	DEAD-Box RNA Helicases in Bacillus subtilis Have Multiple Functions and Act Independently from Each Other. Journal of Bacteriology, 2013, 195, 534-544.	2.2	69
77	Benchmarking Various Green Fluorescent Protein Variants in Bacillus subtilis, Streptococcus pneumoniae, and Lactococcus lactis for Live Cell Imaging. Applied and Environmental Microbiology, 2013, 79, 6481-6490.	3.1	110
78	Functional Analysis of the ComK Protein of Bacillus coagulans. PLoS ONE, 2013, 8, e53471.	2.5	8
79	CodY, a pleiotropic regulator, influences multicellular behaviour and efficient production of virulence factors in <i>Bacillus cereus</i> . Environmental Microbiology, 2012, 14, 2233-2246.	3.8	87
80	The protective layer of biofilm: a repellent function for a new class of amphiphilic proteins. Molecular Microbiology, 2012, 85, 8-11.	2.5	39
81	Crystal Structures of Two Transcriptional Regulators from Bacillus cereus Define the Conserved Structural Features of a PadR Subfamily. PLoS ONE, 2012, 7, e48015.	2.5	42
82	Distinct Roles of ComK1 and ComK2 in Gene Regulation in Bacillus cereus. PLoS ONE, 2011, 6, e21859.	2.5	6
83	Biofilm formation and dispersal in Gram-positive bacteria. Current Opinion in Biotechnology, 2011, 22, 172-179.	6.6	240
84	Rok Regulates <i>yuaB</i> Expression during Architecturally Complex Colony Development of <i>Bacillus subtilis</i> 168. Journal of Bacteriology, 2011, 193, 998-1002.	2.2	48
85	Transcriptional Responses of Bacillus cereus towards Challenges with the Polysaccharide Chitosan. PLoS ONE, 2011, 6, e24304.	2.5	10
86	Genetic Tool Development for a New Host for Biotechnology, the Thermotolerant Bacterium <i>Bacillus coagulans</i> . Applied and Environmental Microbiology, 2010, 76, 4085-4088.	3.1	37
87	Response of Bacillus cereus ATCC 14579 to challenges with sublethal concentrations of enterocin AS-48. BMC Microbiology, 2009, 9, 227.	3.3	21
88	Ubiquitous late competence genes in $\langle i \rangle$ Bacillus $\langle i \rangle$ species indicate the presence of functional DNA uptake machineries. Environmental Microbiology, 2009, 11, 1911-1922.	3.8	60
89	Induction of natural competence in <i>Bacillus cereus</i> ATCC14579. Microbial Biotechnology, 2008, 1, 226-235.	4.2	39
90	Anaerobic regulation of hydrogenase transcription in different bacteria. Biochemical Society Transactions, 2005, 33, 36-38.	3.4	11

Akos T Kovacs

#	Article	IF	CITATION
91	The hydrogenases of Thiocapsa roseopersicina. Biochemical Society Transactions, 2005, 33, 61-63.	3.4	18
92	Hydrogen independent expression of hupSL genes in Thiocapsa roseopersicina BBS. FEBS Journal, 2005, 272, 4807-4816.	4.7	18
93	An FNR-Type Regulator Controls the Anaerobic Expression of Hyn Hydrogenase in Thiocapsa roseopersicina. Journal of Bacteriology, 2005, 187, 2618-2627.	2.2	13
94	The PpsR regulator family. Research in Microbiology, 2005, 156, 619-625.	2.1	24
95	Cyanobacterial-Type, Heteropentameric, NAD ⁺ -Reducing NiFe Hydrogenase in the Purple Sulfur Photosynthetic Bacterium <i>Thiocapsa roseopersicina</i> . Applied and Environmental Microbiology, 2004, 70, 722-728.	3.1	68
96	Modular Broad-Host-Range Expression Vectors for Single-Protein and Protein Complex Purification. Applied and Environmental Microbiology, 2004, 70, 712-721.	3.1	34
97	Improvement of biohydrogen production and intensification of biogas formation. Reviews in Environmental Science and Biotechnology, 2004, 3, 321-330.	8.1	18
98	Accessory proteins functioning selectively and pleiotropically in the biosynthesis of [NiFe] hydrogenases in Thiocapsa roseopersicina. FEBS Journal, 2003, 270, 2218-2227.	0.2	37
99	Genes Involved in the Biosynthesis of Photosynthetic Pigments in the Purple Sulfur Photosynthetic Bacterium Thiocapsa roseopersicina. Applied and Environmental Microbiology, 2003, 69, 3093-3102.	3.1	39
100	Hydrogenases, accessory genes and the regulation of 6NiFe9 hydrogenase biosynthesis in Thiocapsa roseopersicina. International Journal of Hydrogen Energy, 2002, 27, 1463-1469.	7.1	27
101	Transposon Mutagenesis in Purple Sulfur Photosynthetic Bacteria: Identification of hypF, Encoding a Protein Capable of Processing [NiFe] Hydrogenases in $\hat{l}\pm$, \hat{l}^2 , and \hat{l}^3 Subdivisions of the Proteobacteria. Applied and Environmental Microbiology, 2001, 67, 2476-2483.	3.1	41