Akos T Kovacs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4533264/publications.pdf Version: 2024-02-01

		109321	138484
101	4,619	35	58
papers	citations	h-index	g-index
135	135	135	4271
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biofilm formation and dispersal in Gram-positive bacteria. Current Opinion in Biotechnology, 2011, 22, 172-179.	6.6	240
2	Density of founder cells affects spatial pattern formation and cooperation in <i>Bacillus subtilis</i> biofilms. ISME Journal, 2014, 8, 2069-2079.	9.8	231
3	Bacillus subtilis biofilm formation and social interactions. Nature Reviews Microbiology, 2021, 19, 600-614.	28.6	213
4	Division of Labor during Biofilm Matrix Production. Current Biology, 2018, 28, 1903-1913.e5.	3.9	203
5	Quantitative image analysis of microbial communities with BiofilmQ. Nature Microbiology, 2021, 6, 151-156.	13.3	181
6	The Peculiar Functions of the Bacterial Extracellular Matrix. Trends in Microbiology, 2017, 25, 257-266.	7.7	180
7	Molecular Aspects of Plant Growth Promotion and Protection by <i>Bacillus subtilis</i> . Molecular Plant-Microbe Interactions, 2021, 34, 15-25.	2.6	134
8	Motility, Chemotaxis and Aerotaxis Contribute to Competitiveness during Bacterial Pellicle Biofilm Development. Journal of Molecular Biology, 2015, 427, 3695-3708.	4.2	127
9	<i>Bacillus velezensis</i> stimulates resident rhizosphere <i>Pseudomonas stutzeri</i> for plant health through metabolic interactions. ISME Journal, 2022, 16, 774-787.	9.8	125
10	<scp><i>B</i></scp> <i>acillus subtilis</i> attachment to <scp><i>A</i></scp> <i>spergillus niger</i> hyphae results in mutually altered metabolism. Environmental Microbiology, 2015, 17, 2099-2113.	3.8	112
11	Benchmarking Various Green Fluorescent Protein Variants in Bacillus subtilis, Streptococcus pneumoniae, and Lactococcus lactis for Live Cell Imaging. Applied and Environmental Microbiology, 2013, 79, 6481-6490.	3.1	110
12	A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis. MBio, 2015, 6, e00581.	4.1	89
13	CodY, a pleiotropic regulator, influences multicellular behaviour and efficient production of virulence factors in <i>Bacillus cereus</i> . Environmental Microbiology, 2012, 14, 2233-2246.	3.8	87
14	Bacillus subtilis. Trends in Microbiology, 2019, 27, 724-725.	7.7	84
15	Metal ions weaken the hydrophobicity and antibiotic resistance of Bacillus subtilis NCIB 3610 biofilms. Npj Biofilms and Microbiomes, 2020, 6, 1.	6.4	82
16	Sliding on the surface: bacterial spreading without an active motor. Environmental Microbiology, 2017, 19, 2537-2545.	3.8	71
17	DEAD-Box RNA Helicases in Bacillus subtilis Have Multiple Functions and Act Independently from Each Other. Journal of Bacteriology, 2013, 195, 534-544.	2.2	69
18	The YmdB Phosphodiesterase Is a Global Regulator of Late Adaptive Responses in Bacillus subtilis. Journal of Bacteriology, 2014, 196, 265-275.	2.2	69

#	Article	IF	CITATIONS
19	Laboratory Evolution of Microbial Interactions in Bacterial Biofilms. Journal of Bacteriology, 2016, 198, 2564-2571.	2.2	69
20	Cyanobacterial-Type, Heteropentameric, NAD ⁺ -Reducing NiFe Hydrogenase in the Purple Sulfur Photosynthetic Bacterium <i>Thiocapsa roseopersicina</i> . Applied and Environmental Microbiology, 2004, 70, 722-728.	3.1	68
21	Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium. Microbiology (United) Tj ETQq1 1	0.784314 r 1.8	gBT /Overloc
22	Ubiquitous late competence genes in <i>Bacillus</i> species indicate the presence of functional DNA uptake machineries. Environmental Microbiology, 2009, 11, 1911-1922.	3.8	60
23	De novo evolved interference competition promotes the spread of biofilm defectors. Nature Communications, 2017, 8, 15127.	12.8	60
24	A circadian clock in a nonphotosynthetic prokaryote. Science Advances, 2021, 7, .	10.3	59
25	Evolved Biofilm: Review on the Experimental Evolution Studies of Bacillus subtilis Pellicles. Journal of Molecular Biology, 2019, 431, 4749-4759.	4.2	57
26	Genomic and Chemical Diversity of Bacillus subtilis Secondary Metabolites against Plant Pathogenic Fungi. MSystems, 2021, 6, .	3.8	55
27	From environmental signals to regulators: Modulation of biofilm development in Gramâ€positive bacteria. Journal of Basic Microbiology, 2014, 54, 616-632.	3.3	53
28	Collapse of genetic division of labour and evolution of autonomy in pellicle biofilms. Nature Microbiology, 2018, 3, 1451-1460.	13.3	51
29	Rok Regulates <i>yuaB</i> Expression during Architecturally Complex Colony Development of <i>Bacillus subtilis</i> 168. Journal of Bacteriology, 2011, 193, 998-1002.	2.2	48
30	Depiction of secondary metabolites and antifungal activity of Bacillus velezensis DTU001. Synthetic and Systems Biotechnology, 2019, 4, 142-149.	3.7	46
31	Crystal Structures of Two Transcriptional Regulators from Bacillus cereus Define the Conserved Structural Features of a PadR Subfamily. PLoS ONE, 2012, 7, e48015.	2.5	42
32	Transposon Mutagenesis in Purple Sulfur Photosynthetic Bacteria: Identification of hypF , Encoding a Protein Capable of Processing [NiFe] Hydrogenases in α, β, and γ Subdivisions of the Proteobacteria. Applied and Environmental Microbiology, 2001, 67, 2476-2483.	3.1	41
33	The impact of manganese on biofilm development of Bacillus subtilis. Microbiology (United Kingdom), 2016, 162, 1468-1478.	1.8	41
34	Bacterial differentiation via gradual activation of global regulators. Current Genetics, 2016, 62, 125-128.	1.7	40
35	Genes Involved in the Biosynthesis of Photosynthetic Pigments in the Purple Sulfur Photosynthetic Bacterium Thiocapsa roseopersicina. Applied and Environmental Microbiology, 2003, 69, 3093-3102.	3.1	39
36	Induction of natural competence in <i>Bacillus cereus</i> ATCC14579. Microbial Biotechnology, 2008, 1, 226-235.	4.2	39

#	Article	IF	CITATIONS
37	The protective layer of biofilm: a repellent function for a new class of amphiphilic proteins. Molecular Microbiology, 2012, 85, 8-11.	2.5	39
38	Spatio-temporal Remodeling of Functional Membrane Microdomains Organizes the Signaling Networks of a Bacterium. PLoS Genetics, 2015, 11, e1005140.	3.5	39
39	Phylogenetic Distribution of Secondary Metabolites in the Bacillus subtilis Species Complex. MSystems, 2021, 6, .	3.8	39
40	Accessory proteins functioning selectively and pleiotropically in the biosynthesis of [NiFe] hydrogenases inThiocapsa roseopersicina. FEBS Journal, 2003, 270, 2218-2227.	0.2	37
41	Genetic Tool Development for a New Host for Biotechnology, the Thermotolerant Bacterium <i>Bacillus coagulans</i> . Applied and Environmental Microbiology, 2010, 76, 4085-4088.	3.1	37
42	Modular Broad-Host-Range Expression Vectors for Single-Protein and Protein Complex Purification. Applied and Environmental Microbiology, 2004, 70, 712-721.	3.1	34
43	Presence of Calcium Lowers the Expansion of Bacillus subtilis Colony Biofilms. Microorganisms, 2017, 5, 7.	3.6	33
44	Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms. FEMS Microbiology Ecology, 2018, 94, .	2.7	33
45	Surfactin production is not essential for pellicle and root-associated biofilm development of Bacillus subtilis. Biofilm, 2020, 2, 100021.	3.8	33
46	Impact of spatial distribution on the development of mutualism in microbes. Frontiers in Microbiology, 2014, 5, 649.	3.5	32
47	YsbA and LytST are essential for pyruvate utilization in <i>Bacillus subtilis</i> . Environmental Microbiology, 2017, 19, 83-94.	3.8	32
48	Phages carry interbacterial weapons encoded by biosynthetic gene clusters. Current Biology, 2021, 31, 3479-3489.e5.	3.9	30
49	Hydrogenases, accessory genes and the regulation of 6NiFe9 hydrogenase biosynthesis in Thiocapsa roseopersicina. International Journal of Hydrogen Energy, 2002, 27, 1463-1469.	7.1	27
50	The Role of Functional Amyloids in Multicellular Growth and Development of Gram-Positive Bacteria. Biomolecules, 2017, 7, 60.	4.0	27
51	Privatization of Biofilm Matrix in Structurally Heterogeneous Biofilms. MSystems, 2020, 5, .	3.8	27
52	Are There Circadian Clocks in Non-Photosynthetic Bacteria?. Biology, 2019, 8, 41.	2.8	26
53	Fungal hyphae colonization by Bacillus subtilis relies on biofilm matrix components. Biofilm, 2019, 1, 100007.	3.8	26
54	Pervasive prophage recombination occurs during evolution of spore-forming <i>Bacilli</i> . ISME Journal, 2021, 15, 1344-1358.	9.8	26

#	Article	IF	CITATIONS
55	Diversification of <scp><i>Bacillus subtilis</i></scp> during experimental evolution on <i><scp>A</scp>rabidopsis <scp>thaliana</scp></i> and the complementarity in root colonization of evolved subpopulations. Environmental Microbiology, 2021, 23, 6122-6136.	3.8	26
56	The PpsR regulator family. Research in Microbiology, 2005, 156, 619-625.	2.1	24
57	Cheaters shape the evolution of phenotypic heterogeneity in <i>Bacillus subtilis</i> biofilms. ISME Journal, 2020, 14, 2302-2312.	9.8	23
58	Dissimilar pigment regulation in Serpula lacrymans and Paxillus involutus during inter-kingdom interactions. Microbiology (United Kingdom), 2018, 164, 65-77.	1.8	23
59	Unraveling the predator-prey relationship of Cupriavidus necator and Bacillus subtilis. Microbiological Research, 2016, 192, 231-238.	5.3	22
60	From Cell Death to Metabolism: Holin-Antiholin Homologues with New Functions. MBio, 2017, 8, .	4.1	22
61	Response of Bacillus cereus ATCC 14579 to challenges with sublethal concentrations of enterocin AS-48. BMC Microbiology, 2009, 9, 227.	3.3	21
62	Bacillus cereus sensu lato biofilm formation and its ecological importance. Biofilm, 2022, 4, 100070.	3.8	21
63	Experimental evolution of Bacillus subtilis on Arabidopsis thaliana roots reveals fast adaptation and improved root colonization. IScience, 2022, 25, 104406.	4.1	20
64	Application of quercetin and its bio-inspired nanoparticles as anti-adhesive agents against Bacillus subtilis attachment to surface. Materials Science and Engineering C, 2017, 70, 753-762.	7.3	19
65	The Ectomycorrhizospheric Habitat of Norway Spruce and Tricholoma vaccinum: Promotion of Plant Growth and Fitness by a Rich Microorganismic Community. Frontiers in Microbiology, 2019, 10, 307.	3.5	19
66	Improvement of biohydrogen production and intensification of biogas formation. Reviews in Environmental Science and Biotechnology, 2004, 3, 321-330.	8.1	18
67	The hydrogenases of Thiocapsa roseopersicina. Biochemical Society Transactions, 2005, 33, 61-63.	3.4	18
68	Hydrogen independent expression of hupSL genes in Thiocapsa roseopersicina BBS. FEBS Journal, 2005, 272, 4807-4816.	4.7	18
69	Impact of Rap-Phr system abundance on adaptation of Bacillus subtilis. Communications Biology, 2021, 4, 468.	4.4	18
70	Secondary metabolites of <i>Bacillus subtilis</i> impact the assembly of soil-derived semisynthetic bacterial communities. Beilstein Journal of Organic Chemistry, 2020, 16, 2983-2998.	2.2	18
71	Lysinibacillus fusiformis M5 Induces Increased Complexity in Bacillus subtilis 168 Colony Biofilms via Hypoxanthine. Journal of Bacteriology, 2017, 199, .	2.2	17
72	Repeated triggering of sporulation in <i>Bacillus subtilis</i> selects against a protein that affects the timing of cell division. ISME Journal, 2014, 8, 77-87.	9.8	16

#	Article	IF	CITATIONS
73	Monitoring Spatial Segregation in Surface Colonizing Microbial Populations. Journal of Visualized Experiments, 2016, , .	0.3	16
74	Hampered motility promotes the evolution of wrinkly phenotype in Bacillus subtilis. BMC Evolutionary Biology, 2018, 18, 155.	3.2	16
75	Adaptation of Bacillus thuringiensis to Plant Colonization Affects Differentiation and Toxicity. MSystems, 2021, 6, e0086421.	3.8	16
76	Complex extracellular biology drives surface competition during colony expansion in <i>Bacillus subtilis</i> . ISME Journal, 2022, 16, 2320-2328.	9.8	16
77	In Bacillus subtilis LutR is part of the global complex regulatory network governing the adaptation to the transition from exponential growth to stationary phase. Microbiology (United Kingdom), 2014, 160, 243-260.	1.8	15
78	An FNR-Type Regulator Controls the Anaerobic Expression of Hyn Hydrogenase in Thiocapsa roseopersicina. Journal of Bacteriology, 2005, 187, 2618-2627.	2.2	13
79	Complete Genome Sequences of 13 Bacillus subtilis Soil Isolates for Studying Secondary Metabolite Diversity. Microbiology Resource Announcements, 2020, 9, .	0.6	13
80	Deletion of Rapâ€Phr systems in <i>Bacillus subtilis</i> influences in vitro biofilm formation and plant root colonization. MicrobiologyOpen, 2021, 10, e1212.	3.0	13
81	Comparative genomics and transcriptomics analysis of experimentally evolved <i><scp>E</scp>scherichia coli</i> â€ <scp>MC</scp> 1000 in complex environments. Environmental Microbiology, 2014, 16, 856-870.	3.8	12
82	Single Cell FRET Analysis for the Identification of Optimal FRET-Pairs in Bacillus subtilis Using a Prototype MEM-FLIM System. PLoS ONE, 2015, 10, e0123239.	2.5	12
83	Surfing of bacterial droplets: <i>Bacillus subtilis</i> sliding revisited. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8802.	7.1	12
84	Anaerobic regulation of hydrogenase transcription in different bacteria. Biochemical Society Transactions, 2005, 33, 36-38.	3.4	11
85	Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development. Materials, 2018, 11, 157.	2.9	11
86	Modelling population dynamics in a unicellular social organism community using a minimal model and evolutionary game theory. Open Biology, 2020, 10, 200206.	3.6	11
87	Impaired competence in flagellar mutants of <i>Bacillus subtilis</i> is connected to the regulatory network governed by DegU. Environmental Microbiology Reports, 2018, 10, 23-32.	2.4	10
88	Transcriptional Responses of Bacillus cereus towards Challenges with the Polysaccharide Chitosan. PLoS ONE, 2011, 6, e24304.	2.5	10
89	Differential equation-based minimal model describing metabolic oscillations in <i>Bacillus subtilis</i> biofilms. Royal Society Open Science, 2020, 7, 190810.	2.4	8
90	Functional Analysis of the ComK Protein of Bacillus coagulans. PLoS ONE, 2013, 8, e53471.	2.5	8

#	Article	IF	CITATIONS
91	Distinct Roles of ComK1 and ComK2 in Gene Regulation in Bacillus cereus. PLoS ONE, 2011, 6, e21859.	2.5	6
92	Draft Genome Sequence of the Soil Isolate Lysinibacillus fusiformis M5, a Potential Hypoxanthine Producer. Genome Announcements, 2016, 4, .	0.8	6
93	Complete Genome Sequences of Four Soil-Derived Isolates for Studying Synthetic Bacterial Community Assembly. Microbiology Resource Announcements, 2021, 10, e0084821.	0.6	6
94	Quantitative High-Throughput Screening Methods Designed for Identification of Bacterial Biocontrol Strains with Antifungal Properties. Microbiology Spectrum, 2022, 10, e0143321.	3.0	6
95	Physiological and transcriptional profiling of surfactin exerted antifungal effect against Candida albicans. Biomedicine and Pharmacotherapy, 2022, 152, 113220.	5.6	6
96	The global regulator CodY is required for the fitness of <i>Bacillus cereus</i> in various laboratory media and certain beverages. FEMS Microbiology Letters, 2016, 363, fnw126.	1.8	4
97	Adaptation and phenotypic diversification of Bacillus thuringiensis biofilm are accompanied by fuzzy spreader morphotypes. Npj Biofilms and Microbiomes, 2022, 8, 27.	6.4	4
98	Biofilm Dispersal for Spore Release in Bacillus subtilis. Journal of Bacteriology, 2021, 203, e0019221.	2.2	3
99	A fungal scent from the cheese. Environmental Microbiology, 2020, 22, 4524-4526.	3.8	2
100	Structural damage of Bacillus subtilis biofilms using pulsed laser interaction with gold thin films. Journal of Biophotonics, 2017, 10, 1043-1052.	2.3	1
101	Biofilm: Introducing a new journal for the broad biofilm field. Biofilm, 2019, 1, 100003.	3.8	0