Youg-Su Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4533161/publications.pdf

Version: 2024-02-01

209 papers 10,581 citations

53 h-index 93 g-index

212 all docs 212 docs citations

times ranked

212

8640 citing authors

#	Article	IF	CITATIONS
1	Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends in Biotechnology, 2013, 31, 70-77.	9.3	492
2	Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nature Biotechnology, 2007, 25, 319-326.	17.5	449
3	Engineered <i>Saccharomyces cerevisiae</i> capable of simultaneous cellobiose and xylose fermentation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 504-509.	7.1	445
4	Metabolic engineering for improved fermentation of pentoses by yeasts. Applied Microbiology and Biotechnology, 2004, 63, 495-509.	3.6	436
5	Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metabolic Engineering, 2005, 7, 155-164.	7.0	422
6	Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome, 2015, 3, 13.	11.1	319
7	Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nature Communications, 2017, 8, 15393.	12.8	216
8	Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnology Advances, 2013, 31, 851-861.	11.7	206
9	Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nature Communications, 2013, 4, 2580.	12.8	198
10	Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microbial Cell Factories, 2017, 16, 82.	4.0	195
11	Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends in Biotechnology, 2012, 30, 274-282.	9.3	186
12	Rational and Evolutionary Engineering Approaches Uncover a Small Set of Genetic Changes Efficient for Rapid Xylose Fermentation in Saccharomyces cerevisiae. PLoS ONE, 2013, 8, e57048.	2.5	173
13	Optimal Growth and Ethanol Production from Xylose by Recombinant Saccharomyces cerevisiae Require Moderate d -Xylulokinase Activity. Applied and Environmental Microbiology, 2003, 69, 495-503.	3.1	168
14	Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. Journal of Biotechnology, 2015, 200, 1-5.	3.8	153
15	Saccharomyces cerevisiae Engineered for Xylose Metabolism Exhibits a Respiratory Response. Applied and Environmental Microbiology, 2004, 70, 6816-6825.	3.1	146
16	Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Advances in Applied Microbiology, 2000, 47, 221-268.	2.4	145
17	Bacterial Genome Editing with CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable "Clean―Mutant Selection in <i>Clostridium beijerinckii</i> as an Example. ACS Synthetic Biology, 2016, 5, 721-732.	3.8	143
18	Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli. Metabolic Engineering, 2007, 9, 337-347.	7.0	134

#	Article	IF	CITATIONS
19	Improvement of Xylose Uptake and Ethanol Production in Recombinant Saccharomyces cerevisiae through an Inverse Metabolic Engineering Approach. Applied and Environmental Microbiology, 2005, 71, 8249-8256.	3.1	133
20	Construction of a Quadruple Auxotrophic Mutant of an Industrial Polyploid Saccharomyces cerevisiae Strain by Using RNA-Guided Cas9 Nuclease. Applied and Environmental Microbiology, 2014, 80, 7694-7701.	3.1	131
21	Overcoming the limited availability of human milk oligosaccharides: challenges and opportunities for research and application. Nutrition Reviews, 2016, 74, 635-644.	5.8	109
22	Recent advances in biological production of sugar alcohols. Current Opinion in Biotechnology, 2016, 37, 105-113.	6.6	109
23	Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresource Technology, 2013, 146, 274-281.	9.6	103
24	Whole cell biosynthesis of a functional oligosaccharide, 2′-fucosyllactose, using engineered Escherichia coli. Microbial Cell Factories, 2012, 11, 48.	4.0	99
25	Improved galactose fermentation of <i>Saccharomyces cerevisiae</i> through inverse metabolic engineering. Biotechnology and Bioengineering, 2011, 108, 621-631.	3.3	98
26	Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnology Advances, 2019, 37, 271-283.	11.7	98
27	Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. BMC Systems Biology, 2011, 5, 130.	3.0	95
28	Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metabolic Engineering, 2013, 15, 226-234.	7.0	94
29	Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Applied Microbiology and Biotechnology, 2013, 97, 2761-2772.	3.6	87
30	Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess and Biosystems Engineering, 2012, 35, 1467-1475.	3.4	86
31	Cofermentation of Cellobiose and Galactose by an Engineered Saccharomyces cerevisiae Strain. Applied and Environmental Microbiology, 2011, 77, 5822-5825.	3.1	78
32	Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents. Metabolic Engineering, 2015, 29, 46-55.	7.0	77
33	Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Current Opinion in Chemical Biology, 2015, 29, 49-57.	6.1	77
34	Molecular Cloning of XYL3 (d -Xylulokinase) from Pichia stipitis and Characterization of Its Physiological Function. Applied and Environmental Microbiology, 2002, 68, 1232-1239.	3.1	75
35	PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae. Metabolic Engineering, 2016, 34, 88-96.	7.0	74
36	Production of a human milk oligosaccharide 2′-fucosyllactose by metabolically engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2018, 17, 101.	4.0	73

#	Article	IF	Citations
37	Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. Journal of Biotechnology, 2010, 149, 52-59.	3.8	72
38	Sustainable Lactic Acid Production from Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2021, 9, 1341-1351.	6.7	72
39	Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metabolic Engineering, 2004, 6, 229-238.	7.0	71
40	Changing Flux of Xylose Metabolites by Altering Expression of Xylose Reductase and Xylitol Dehydrogenase in Recombinant Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2003, 106, 277-286.	2.9	70
41	Simultaneous Utilization of Cellobiose, Xylose, and Acetic Acid from Lignocellulosic Biomass for Biofuel Production by an Engineered Yeast Platform. ACS Synthetic Biology, 2015, 4, 707-713.	3.8	69
42	Metabolic Engineering of Probiotic Saccharomyces boulardii. Applied and Environmental Microbiology, 2016, 82, 2280-2287.	3.1	68
43	Enhanced isoprenoid production <scp>f</scp> rom xylose by engineered <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2017, 114, 2581-2591.	3.3	68
44	Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. Journal of Biotechnology, 2014, 192, 376-382.	3.8	67
45	Improved squalene production through increasing lipid contents in <i>Saccharomyces cerevisiae</i> Biotechnology and Bioengineering, 2018, 115, 1793-1800.	3.3	65
46	High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metabolic Engineering, 2012, 14, 336-343.	7.0	63
47	Rapid and markerâ€free refactoring of xyloseâ€fermenting yeast strains with Cas9/CRISPR. Biotechnology and Bioengineering, 2015, 112, 2406-2411.	3.3	63
48	Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Bioresource Technology, 2017, 228, 355-361.	9.6	62
49	Glucose repression can be alleviated by reducing glucose phosphorylation rate in Saccharomyces cerevisiae. Scientific Reports, 2018, 8, 2613.	3.3	62
50	Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by <i>Clostridium acetobutylicum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8505-8510.	7.1	61
51	Deletion of <i>PHO13</i> , Encoding Haloacid Dehalogenase Type IIA Phosphatase, Results in Upregulation of the Pentose Phosphate Pathway in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2015, 81, 1601-1609.	3.1	60
52	Recycling Carbon Dioxide during Xylose Fermentation by Engineered <i>Saccharomyces cerevisiae</i> ACS Synthetic Biology, 2017, 6, 276-283.	3.8	60
53	Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Metabolic Engineering, 2013, 15, 134-143.	7.0	56
54	Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion. Applied Microbiology and Biotechnology, 2015, 99, 8023-8033.	3.6	56

#	Article	IF	Citations
55	Development of a Gene Knockout System Using Mobile Group II Introns (Targetron) and Genetic Disruption of Acid Production Pathways in Clostridium beijerinckii. Applied and Environmental Microbiology, 2013, 79, 5853-5863.	3.1	54
56	Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae. Bioresource Technology, 2015, 191, 512-519.	9.6	52
57	Vitamin A Production by Engineered <i>Saccharomyces cerevisiae</i> from Xylose <i>via</i> Two-Phase <i>iin Situ</i> Extraction. ACS Synthetic Biology, 2019, 8, 2131-2140.	3 . 8	51
58	Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation. Applied Microbiology and Biotechnology, 2014, 98, 1087-1094.	3.6	50
59	Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular \hat{l}^2 -glucosidase. Journal of Biotechnology, 2013, 167, 316-322.	3.8	49
60	Enhanced production of 2,3-butanediol by engineered Saccharomyces cerevisiae through fine-tuning of pyruvate decarboxylase and NADH oxidase activities. Biotechnology for Biofuels, 2016, 9, 265.	6.2	48
61	Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast. Biotechnology and Bioengineering, 2016, 113, 2587-2596.	3.3	47
62	Gene transcription repression in <i>Clostridium beijerinckii</i> using CRISPRâ€dCas9. Biotechnology and Bioengineering, 2016, 113, 2739-2743.	3.3	46
63	Engineering of <i>Saccharomyces cerevisiae</i> for efficient fermentation of cellulose. FEMS Yeast Research, 2020, 20, .	2.3	46
64	Fermentation of Rice Bran and Defatted Rice Bran for Butanol ProductionUsing Clostridium beijerinckii NCIMB 8052. Journal of Microbiology and Biotechnology, 2009, 19, 482-490.	2.1	46
65	Bacterial persisters tolerate antibiotics by not producing hydroxyl radicals. Biochemical and Biophysical Research Communications, 2011, 413, 105-110.	2.1	45
66	Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus. Applied Microbiology and Biotechnology, 2013, 97, 2029-2041.	3.6	45
67	Identification of gene disruptions for increased polyâ€3â€hydroxybutyrate accumulation in <i>Synechocystis</i> PCC 6803. Biotechnology Progress, 2009, 25, 1236-1243.	2.6	44
68	Xylitol production by a Pichia stipitis D-xylulokinase mutant. Applied Microbiology and Biotechnology, 2005, 68, 42-45.	3.6	43
69	Xylose assimilation enhances the production of isobutanol in engineered <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2020, 117, 372-381.	3.3	43
70	Sh ble and Cre adapted for functional genomics and metabolic engineering of Pichia stipitis. Enzyme and Microbial Technology, 2006, 38, 741-747.	3.2	42
71	Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae. Bioresource Technology, 2018, 260, 380-394.	9.6	42
72	Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae. Journal of Biotechnology, 2019, 292, 1-4.	3.8	42

#	Article	IF	CITATIONS
73	Comparison of xylose fermentation by two high-performance engineered strains of Saccharomyces cerevisiae. Biotechnology Reports (Amsterdam, Netherlands), 2016, 9, 53-56.	4.4	41
74	Metabolic engineering of yeast for lignocellulosic biofuel production. Current Opinion in Chemical Biology, 2017, 41, 99-106.	6.1	41
75	Development and physiological characterization of cellobioseâ€consuming <i>Yarrowia lipolytica</i> Biotechnology and Bioengineering, 2015, 112, 1012-1022.	3.3	40
76	2,3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2014, 98, 5757-5764.	3.6	38
77	Xylose utilization stimulates mitochondrial production of isobutanol and 2-methyl-1-butanol in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2019, 12, 223.	6.2	38
78	Feasibility of xylose fermentation by engineered <i>Saccharomyces cerevisiae</i> overexpressing endogenous aldose reductase (<i>GRE3</i>), xylitol dehydrogenase (<i>XYL2</i>), and xylulokinase (<i>XYL3</i>) from <i>Scheffersomyces stipitis</i> . FEMS Yeast Research, 2013, 13, 312-321.	2.3	37
79	Fumarate-Mediated Persistence of Escherichia coli against Antibiotics. Antimicrobial Agents and Chemotherapy, 2016, 60, 2232-2240.	3.2	37
80	Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro. Applied Microbiology and Biotechnology, 2011, 92, 77-84.	3.6	36
81	Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels. ELife, 2015, 4, .	6.0	36
82	Biosynthesis of a Functional Human Milk Oligosaccharide, 2′-Fucosyllactose, and <scp>l</scp> -Fucose Using Engineered <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2018, 7, 2529-2536.	3.8	35
83	Engineering xylose metabolism in yeasts to produce biofuels and chemicals. Current Opinion in Biotechnology, 2021, 67, 15-25.	6.6	35
84	Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast. Nature Communications, 2021, 12, 4975.	12.8	35
85	Production of galactitol from galactose by the oleaginous yeast Rhodosporidium toruloides IFO0880. Biotechnology for Biofuels, 2019, 12, 250.	6.2	34
86	Two-Stage Acidic–Alkaline Hydrothermal Pretreatment of Lignocellulose for the High Recovery of Cellulose and Hemicellulose Sugars. Applied Biochemistry and Biotechnology, 2013, 169, 1069-1087.	2.9	31
87	Lactic acid production from cellobiose and xylose by engineered <i>Saccharomyces cerevisiae</i> Biotechnology and Bioengineering, 2016, 113, 1075-1083.	3.3	31
88	Characterization of a <i>Clostridium beijerinckii spo0A</i> mutant and its application for butyl butyrate production. Biotechnology and Bioengineering, 2017, 114, 106-112.	3.3	31
89	Overcoming the thermodynamic equilibrium of an isomerization reaction through oxidoreductive reactions for biotransformation. Nature Communications, 2019, 10, 1356.	12.8	31
90	Combined biomimetic and inorganic acids hydrolysis of hemicellulose in Miscanthus for bioethanol production. Bioresource Technology, 2012, 110, 278-287.	9.6	30

#	Article	IF	CITATIONS
91	Single Amino Acid Substitutions in HXT2.4 from Scheffersomyces stipitis Lead to Improved Cellobiose Fermentation by Engineered Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2013, 79, 1500-1507.	3.1	30
92	Highâ€level βâ€carotene production from xylose by engineered <i>Saccharomyces cerevisiae</i> without overexpression of a truncated <i>HMG1</i> (t <i>HMG1</i>). Biotechnology and Bioengineering, 2020, 117, 3522-3532.	3.3	30
93	Deletion of <i>FPS1</i> , Encoding Aquaglyceroporin Fps1p, Improves Xylose Fermentation by Engineered Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2013, 79, 3193-3201.	3.1	29
94	Enhanced 2′-Fucosyllactose production by engineered Saccharomyces cerevisiae using xylose as a co-substrate. Metabolic Engineering, 2020, 62, 322-329.	7.0	29
95	Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae. Bioresource Technology, 2013, 149, 525-531.	9.6	28
96	Molecular cloning and expression of fungal cellobiose transporters and \hat{l}^2 -glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. Journal of Biotechnology, 2014, 169, 34-41.	3.8	28
97	Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose. Biotechnology for Biofuels, 2014, 7, 85.	6.2	28
98	Short communication: Conversion of lactose and whey into lactic acid by engineered yeast. Journal of Dairy Science, 2017, 100, 124-128.	3.4	28
99	Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae. Biotechnology for Biofuels, 2014, 7, 126.	6.2	27
100	Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol. Metabolic Engineering, 2017, 40, 176-185.	7.0	27
101	Metabolic engineering considerations for the heterologous expression of xylose-catabolic pathways in Saccharomyces cerevisiae. PLoS ONE, 2020, 15, e0236294.	2.5	26
102	Production of xylose enriched hydrolysate from bioenergy sorghum and its conversion to \hat{l}^2 -carotene using an engineered Saccharomyces cerevisiae. Bioresource Technology, 2020, 308, 123275.	9.6	26
103	Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis. Applied Microbiology and Biotechnology, 2019, 103, 5435-5446.	3.6	25
104	In-depth understanding of molecular mechanisms of aldehyde toxicity to engineer robust Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2021, 105, 2675-2692.	3.6	25
105	Leveraging transcription factors to speed cellobiose fermentation by. Biotechnology for Biofuels, 2014, 7, 126.	6.2	25
106	Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae. Journal of Biotechnology, 2016, 229, 13-21.	3.8	24
107	Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2016, 82, 3631-3639.	3.1	24
108	GroE chaperonins assisted functional expression of bacterial enzymes in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2016, 113, 2149-2155.	3.3	24

#	Article	IF	CITATIONS
109	Redirection of the Glycolytic Flux Enhances Isoprenoid Production in <i>Saccharomyces cerevisiae</i> . Biotechnology Journal, 2020, 15, e1900173.	3.5	24
110	Direct fermentation of Jerusalem artichoke tuber powder for production of I-lactic acid and d-lactic acid by metabolically engineered Kluyveromyces marxianus. Journal of Biotechnology, 2018, 266, 27-33.	3.8	23
111	Combinatorial genetic perturbation to refine metabolic circuits for producing biofuels and biochemicals. Biotechnology Advances, 2013, 31, 976-985.	11.7	22
112	Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis. Bioresource Technology, 2017, 241, 88-94.	9.6	22
113	Xylose Assimilation for the Efficient Production of Biofuels and Chemicals by Engineered <i>Saccharomyces cerevisiae</i> . Biotechnology Journal, 2021, 16, e2000142.	3.5	22
114	Uncovering the Nutritional Landscape of Food. PLoS ONE, 2015, 10, e0118697.	2.5	22
115	Microalgal metabolic engineering strategies for the production of fuels and chemicals. Bioresource Technology, 2022, 345, 126529.	9.6	22
116	Tuning structural durability of yeastâ€encapsulating alginate gel beads with interpenetrating networks for sustained bioethanol production. Biotechnology and Bioengineering, 2012, 109, 63-73.	3.3	21
117	A Mutation in <i>PGM2</i> Causing Inefficient Galactose Metabolism in the Probiotic Yeast Saccharomyces boulardii. Applied and Environmental Microbiology, 2018, 84, .	3.1	21
118	Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose. Journal of Biotechnology, 2016, 234, 99-104.	3.8	20
119	Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. Journal of Biotechnology, 2019, 304, 31-37.	3.8	20
120	Repeated-batch fermentations of xylose and glucose–xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism. Journal of Biotechnology, 2010, 150, 404-407.	3.8	19
121	Investigation of the functional role of aldose 1-epimerase in engineered cellobiose utilization. Journal of Biotechnology, 2013, 168, 1-6.	3.8	19
122	Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions. Enzyme and Microbial Technology, 2017, 101, 30-35.	3.2	19
123	A SWEET surprise: Anaerobic fungal sugar transporters and chimeras enhance sugar uptake in yeast. Metabolic Engineering, 2021, 66, 137-147.	7.0	19
124	Increased Accumulation of Squalene in Engineered Yarrowia lipolytica through Deletion of <i>PEX10</i> and <i>URE2</i> Applied and Environmental Microbiology, 2021, 87, e0048121.	3.1	19
125	Metabolic engineering of the oleaginous yeast Yarrowia lipolytica PO1f for production of erythritol from glycerol. Biotechnology for Biofuels, 2021, 14, 188.	6.2	19
126	Integrating transcriptomic and metabolomic analysis of the oleaginous yeast Rhodosporidium toruloides IFO0880 during growth under different carbon sources. Applied Microbiology and Biotechnology, 2021, 105, 7411-7425.	3.6	19

#	Article	IF	Citations
127	Construction of an efficient xylose-fermenting diploid Saccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation. Journal of Biotechnology, 2013, 164, 105-111.	3.8	18
128	Enhanced production of 2,3â€butanediol in pyruvate decarboxylaseâ€deficient <i>Saccharomyces cerevisiae</i> through optimizing ratio of glucose/galactose. Biotechnology Journal, 2016, 11, 1424-1432.	3.5	18
129	Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation. Journal of Biotechnology, 2017, 245, 1-8.	3.8	18
130	Synchronization of stochastic expressions drives the clustering of functionally related genes. Science Advances, 2019, 5, eaax6525.	10.3	18
131	In Vitro Prebiotic and Anti-Colon Cancer Activities of Agar-Derived Sugars from Red Seaweeds. Marine Drugs, 2021, 19, 213.	4.6	18
132	A search for synthetic peptides that inhibit soluble <i>N</i> â€ethylmaleimide sensitiveâ€factor attachment receptorâ€mediated membrane fusion. FEBS Journal, 2008, 275, 3051-3063.	4.7	17
133	Promiscuous activities of heterologous enzymes lead to unintended metabolic rerouting in Saccharomyces cerevisiae engineered to assimilate various sugars from renewable biomass. Biotechnology for Biofuels, 2018, 11, 140.	6.2	17
134	Identification and analysis of sugar transporters capable of coâ€transporting glucose and xylose simultaneously. Biotechnology Journal, 2021, 16, e2100238.	3.5	17
135	Elimination of the cryptic plasmid in Leuconostoc citreum by CRISPR/Cas9 system. Journal of Biotechnology, 2017, 251, 151-155.	3.8	16
136	Development of an oxygen-independent flavin mononucleotide-based fluorescent reporter system in Clostridium beijerinckii and its potential applications. Journal of Biotechnology, 2018, 265, 119-126.	3.8	16
137	Effects of acclimation and pH on ammonia inhibition for mesophilic methanogenic microflora. Waste Management, 2018, 80, 218-223.	7.4	16
138	Lâ€malic acid production from xylose by engineered <i>Saccharomyces cerevisiae</i> Biotechnology Journal, 2022, 17, e2000431.	3.5	16
139	Improved bio-hydrogen production by overexpression of glucose-6-phosphate dehydrogenase and FeFe hydrogenase in Clostridium acetobutylicum. International Journal of Hydrogen Energy, 2021, 46, 36687-36695.	7.1	16
140	Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism. Applied Microbiology and Biotechnology, 2018, 102, 8121-8133.	3.6	15
141	Deletion of <i>JEN1</i> and <i>ADY2</i> reduces lactic acid yield from an engineered <i>Saccharomyces cerevisiae</i> , in xylose medium, expressing a heterologous lactate dehydrogenase. FEMS Yeast Research, 2019, 19, .	2.3	15
142	Biological upgrading of 3,6-anhydro- <scp>l</scp> -galactose from agarose to a new platform chemical. Green Chemistry, 2020, 22, 1776-1785.	9.0	15
143	Genomic, Transcriptional, and Phenotypic Analysis of the Glucose Derepressed <i>Clostridium beijerinckii</i> Mutant Exhibiting Acid Crash Phenotype. Biotechnology Journal, 2017, 12, 1700182.	3.5	14
144	Bioprocessing and technoeconomic feasibility analysis of simultaneous production of d-psicose and ethanol using engineered yeast strain KAM-2GD. Bioresource Technology, 2019, 275, 27-34.	9.6	14

#	Article	IF	CITATIONS
145	Metabolic engineering of non-pathogenic microorganisms for 2,3-butanediol production. Applied Microbiology and Biotechnology, 2021, 105, 5751-5767.	3.6	14
146	Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals. Advances in Biochemical Engineering/Biotechnology, 2016, 162, 175-215.	1.1	13
147	Mitigating health risks associated with alcoholic beverages through metabolic engineering. Current Opinion in Biotechnology, 2016, 37, 173-181.	6.6	13
148	Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents. Bioprocess and Biosystems Engineering, 2017, 40, 683-691.	3.4	13
149	Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 387-395.	3.0	13
150	Yeast Derived LysA2 Can Control Bacterial Contamination in Ethanol Fermentation. Viruses, 2018, 10, 281.	3.3	13
151	Bacterial Genome Editing with CRISPR-Cas9: Taking Clostridium beijerinckii as an Example. Methods in Molecular Biology, 2018, 1772, 297-325.	0.9	13
152	<scp>L</scp> â€Fucose production by engineered <i>Escherichia coli</i> Bioengineering, 2019, 116, 904-911.	3.3	13
153	Conversion of High-Solids Hydrothermally Pretreated Bioenergy Sorghum to Lipids and Ethanol Using Yeast Cultures. ACS Sustainable Chemistry and Engineering, 2021, 9, 8515-8525.	6.7	13
154	Production of neoagarooligosaccharides by probiotic yeast Saccharomyces cerevisiae var. boulardii engineered as a microbial cell factory. Microbial Cell Factories, 2021, 20, 160.	4.0	13
155	Yeast synthetic biology toolbox and applications for biofuel production. FEMS Yeast Research, 2014, 15, n/a-n/a.	2.3	12
156	Overproduction of Exopolysaccharide Colanic Acid by Escherichia coli by Strain Engineering and Media Optimization. Applied Biochemistry and Biotechnology, 2021, 193, 111-127.	2.9	12
157	Photoautotrophic organic acid production: Glycolic acid production by microalgal cultivation. Chemical Engineering Journal, 2022, 433, 133636.	12.7	12
158	Investigation of protein expression profiles of erythritol-producing Candida magnoliae in response to glucose perturbation. Enzyme and Microbial Technology, 2013, 53, 174-180.	3.2	11
159	Phenotypic evaluation and characterization of 21 industrial Saccharomyces cerevisiae yeast strains. FEMS Yeast Research, 2018, 18 , .	2.3	11
160	Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose. Journal of Microbiology and Biotechnology, 2017, 27, 1649-1656.	2.1	11
161	Next-Generation Genetic and Fermentation Technologies for Safe and Sustainable Production of Food Ingredients: Colors and Flavorings. Annual Review of Food Science and Technology, 2022, 13, 463-488.	9.9	11
162	Restoration of Growth Phenotypes of <i>Escherichia coli</i> DH5α in Minimal Media through Reversal of a Point Mutation in <i>purB</i> . Applied and Environmental Microbiology, 2010, 76, 6307-6309.	3.1	10

#	Article	IF	Citations
163	Production of (S)-3-hydroxybutyrate by metabolically engineered Saccharomyces cerevisiae. Journal of Biotechnology, 2015, 209, 23-30.	3.8	10
164	Metabolomic elucidation of the effects of media and carbon sources on fatty acid production by Yarrowia lipolytica. Journal of Biotechnology, 2018, 272-273, 7-13.	3.8	10
165	Yeast metabolic engineering for carbon dioxide fixation and its application. Bioresource Technology, 2022, 346, 126349.	9.6	10
166	Assembly of Coenzyme Q10 nanostructure resembling nascent discoidal high density lipoprotein particle. Biochemical and Biophysical Research Communications, 2009, 388, 217-221.	2.1	9
167	Effects of genetic variation and growing condition of prairie cordgrass on feedstock composition and ethanol yield. Bioresource Technology, 2015, 183, 70-77.	9.6	9
168	Enhanced hexose fermentation by Saccharomyces cerevisiae through integration of stoichiometric modeling and genetic screening. Journal of Biotechnology, 2015, 194, 48-57.	3.8	9
169	Transporter engineering for cellobiose fermentation under lower pH conditions by engineered Saccharomyces cerevisiae. Bioresource Technology, 2017, 245, 1469-1475.	9.6	9
170	Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase. Journal of Biotechnology, 2018, 275, 53-59.	3.8	9
171	Metabolic engineering of Saccharomyces cerevisiae by using the CRISPR-Cas9 system for enhanced fatty acid production. Process Biochemistry, 2018, 73, 23-28.	3.7	9
172	Domesticating a food spoilage yeast into an organic acidâ€tolerant metabolic engineering host: Lactic acid production by engineered <i>Zygosaccharomyces bailii</i> . Biotechnology and Bioengineering, 2021, 118, 372-382.	3.3	9
173	A comparative phenotypic and genomic analysis of Clostridium beijerinckii mutant with enhanced solvent production. Journal of Biotechnology, 2021, 329, 49-55.	3.8	9
174	Selective production of retinol by engineered Saccharomyces cerevisiae through expression of retinol dehydrogenase. Biotechnology and Bioengineering, 2021, , .	3. 3	9
175	Genome-edited Saccharomyces cerevisiae strains for improving quality, safety, and flavor of fermented foods. Food Microbiology, 2022, 104, 103971.	4.2	9
176	Laboratory-Scale Production of ¹³ C-Labeled Lycopene and Phytoene by Bioengineered Escherichia coli. Journal of Agricultural and Food Chemistry, 2011, 59, 9996-10005.	5.2	8
177	Biosynthetic Routes for Producing Various Fucosyl-Oligosaccharides. ACS Synthetic Biology, 2019, 8, 415-424.	3.8	8
178	Metabolic and enzymatic elucidation of cooperative degradation of red seaweed agarose by two human gut bacteria. Scientific Reports, 2021, 11, 13955.	3.3	8
179	Enhancing acid tolerance of Escherichia coli via viroporin-mediated export of protons and its application for efficient whole-cell biotransformation. Metabolic Engineering, 2021, 67, 277-284.	7.0	8
180	Directed evolution and secretory expression of xylose isomerase for improved utilisation of xylose in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2021, 14, 223.	6.2	8

#	Article	IF	Citations
181	Bioenergy and Biorefinery. Biotechnology Journal, 2019, 14, e1900160.	3.5	7
182	Glycolate production by a Chlamydomonas reinhardtii mutant lacking carbon-concentrating mechanism. Journal of Biotechnology, 2021, 335, 39-46.	3.8	7
183	Dissection and enhancement of prebiotic properties of yeast cell wall oligosaccharides through metabolic engineering. Biomaterials, 2022, 282, 121379.	11.4	7
184	2′-Fucosyllactose production in engineered Escherichia coli with deletion of waaF and wcaJ and overexpression of FucT2. Journal of Biotechnology, 2021, 340, 30-38.	3.8	6
185	Direct conversion of cellulose into ethanol and ethylâ€Î²â€< scp>dâ€glucoside via engineered <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2018, 115, 2859-2868.	3.3	5
186	Development of fluorescent Escherichia coli for a whole-cell sensor of $2\hat{E}^1$ -fucosyllactose. Scientific Reports, 2020, 10, 10514.	3.3	5
187	Transcriptomic Changes Induced by Deletion of Transcriptional Regulator GCR2 on Pentose Sugar Metabolism in Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 2021, 9, 654177.	4.1	5
188	Investigating the role of the transcriptional regulator Ure2 on the metabolism of Saccharomyces cerevisiae: a multi-omics approach. Applied Microbiology and Biotechnology, 2021, 105, 5103-5112.	3.6	5
189	Increased Production of Colanic Acid by an Engineered Escherichia coli Strain, Mediated by Genetic and Environmental Perturbations. Applied Biochemistry and Biotechnology, 2021, 193, 4083-4096.	2.9	5
190	Xylo-Oligosaccharide Utilization by Engineered Saccharomyces cerevisiae to Produce Ethanol. Frontiers in Bioengineering and Biotechnology, 2022, 10, 825981.	4.1	5
191	Synthetic Whole-Cell Biodevices for Targeted Degradation of Antibiotics. Scientific Reports, 2018, 8, 2906.	3.3	4
192	An extra copy of the \hat{l}^2 -glucosidase gene improved the cellobiose fermentation capability of an engineered Saccharomyces cerevisiae strain. 3 Biotech, 2019, 9, 367.	2.2	4
193	Process design and techno-economic analysis of 2′-fucosyllactose enriched distiller's dried grains with solubles production in dry grind ethanol process using genetically engineered Saccharomyces cerevisiae. Bioresource Technology, 2021, 341, 125919.	9.6	4
194	Towards a microarray of functional membrane proteins: Assembly of a surface-attachable, membrane-protein-anchored membrane structure using apolipoprotein A-1. Enzyme and Microbial Technology, 2009, 44, 217-222.	3.2	3
195	Modelâ€guided strain improvement: Simultaneous hydrolysis and coâ€fermentation of cellulosic sugars. Biotechnology Journal, 2012, 7, 328-329.	3.5	3
196	Improved resistance against oxidative stress of engineered cellobiose-fermenting Saccharomyces cerevisiae revealed by metabolite profiling. Biotechnology and Bioprocess Engineering, 2014, 19, 951-957.	2.6	3
197	Effect of the Two-Stage Autohydrolysis of Hardwood on the Enzymatic Saccharification and Subsequent Fermentation with an Efficient Xylose-Utilizing Saccharomyces cerevisiae. BioResources, 2016, 11 , .	1.0	3
198	Fast filtration with a vacuum manifold system as a rapid and robust metabolome sampling method for Saccharomyces cerevisiae. Process Biochemistry, 2021, 110, 195-200.	3.7	2

#	Article	IF	CITATIONS
199	Effects of Engineered Saccharomyces cerevisiae Fermenting Cellobiose through Low-Energy-Consuming Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation. Journal of Microbiology and Biotechnology, 2022, 32, 117-125.	2.1	2
200	Cofermentation of Cellobiose and Galactose by an Engineered Saccharomyces cerevisiae Strain. Applied and Environmental Microbiology, 2011, 77, 7438-7438.	3.1	1
201	Editorial overview: Food biotechnology: Critical gap filler in the nexus of food, energy, and waste for a prosperous future. Current Opinion in Biotechnology, 2016, 37, iv-vii.	6.6	1
202	The pH-stat Butyric Acid Feeding Strategy Coupled with Gas-Stripping for n-Butanol Production by Clostridium beijerinckii. Waste and Biomass Valorization, 2020, 11, 1077-1084.	3.4	1
203	Observation of Cellodextrin Accumulation Resulted from Non-Conventional Secretion of Intracellular Î ² -Glucosidase by Engineered Saccharomyces cerevisiae Fermenting Cellobiose. Journal of Microbiology and Biotechnology, 2021, 31, 1035-1043.	2.1	1
204	Genome-wide transcriptional regulation in <i>Saccharomyces cerevisiae</i> in response to carbon dioxide. FEMS Yeast Research, 2022, 22, .	2.3	1
205	Near-Complete Genome Sequence of Zygosaccharomyces rouxii NRRL Y-64007, a Yeast Capable of Growing on Lignocellulosic Hydrolysates. Microbiology Resource Announcements, 2022, , e0005022.	0.6	O
206	Title is missing!. , 2020, 15, e0236294.		0
207	Title is missing!. , 2020, 15, e0236294.		0
208	Title is missing!. , 2020, 15, e0236294.		0
209	Title is missing!. , 2020, 15, e0236294.		O