## William Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4532708/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The NCEP–NCAR 50–Year Reanalysis: Monthly Means CD–ROM and Documentation. Bulletin of the<br>American Meteorological Society, 2001, 82, 247-267.                                                                                     | 1.7  | 3,710     |
| 2  | Radiative forcing by longâ€lived greenhouse gases: Calculations with the AER radiative transfer models.<br>Journal of Geophysical Research, 2008, 113, .                                                                             | 3.3  | 3,199     |
| 3  | The Community Climate System Model Version 3 (CCSM3). Journal of Climate, 2006, 19, 2122-2143.                                                                                                                                       | 1.2  | 2,075     |
| 4  | The Community Earth System Model: A Framework for Collaborative Research. Bulletin of the<br>American Meteorological Society, 2013, 94, 1339-1360.                                                                                   | 1.7  | 1,848     |
| 5  | Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great<br>Indo-Asian haze. Journal of Geophysical Research, 2001, 106, 28371-28398.                                                         | 3.3  | 1,199     |
| 6  | The Formulation and Atmospheric Simulation of the Community Atmosphere Model Version 3 (CAM3).<br>Journal of Climate, 2006, 19, 2144-2161.                                                                                           | 1.2  | 895       |
| 7  | Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5. Geoscientific Model Development, 2012, 5, 709-739.                                                 | 1.3  | 807       |
| 8  | Anthropogenic and Natural Radiative Forcing. , 2014, , 659-740.                                                                                                                                                                      |      | 786       |
| 9  | An AeroCom initial assessment – optical properties in aerosol component modules of global models.<br>Atmospheric Chemistry and Physics, 2006, 6, 1815-1834.                                                                          | 1.9  | 697       |
| 10 | Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987<br>El Niño. Nature, 1991, 351, 27-32.                                                                                               | 13.7 | 684       |
| 11 | How Much More Global Warming and Sea Level Rise?. Science, 2005, 307, 1769-1772.                                                                                                                                                     | 6.0  | 542       |
| 12 | Evaluation of Climate Models. , 2014, , 741-866.                                                                                                                                                                                     |      | 458       |
| 13 | Taking climate model evaluation to the next level. Nature Climate Change, 2019, 9, 102-110.                                                                                                                                          | 8.1  | 407       |
| 14 | Effects of Black Carbon Aerosols on the Indian Monsoon. Journal of Climate, 2008, 21, 2869-2882.                                                                                                                                     | 1.2  | 406       |
| 15 | The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences, 2013, 10, 7109-7131.                                                                                 | 1.3  | 359       |
| 16 | Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. Journal of Geophysical Research, 2001, 106, 7313-7336.                                               | 3.3  | 298       |
| 17 | Impact of Desert Dust Radiative Forcing on Sahel Precipitation: Relative Importance of Dust Compared to Sea Surface Temperature Variations, Vegetation Changes, and Greenhouse Gas Warming. Journal of Climate, 2007, 20, 1445-1467. | 1.2  | 290       |
| 18 | Amplification of Surface Temperature Trends and Variability in the Tropical Atmosphere. Science, 2005, 309, 1551-1556.                                                                                                               | 6.0  | 267       |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach:<br>Analysis of nitrogen deposition. Journal of Geophysical Research, 2005, 110, .                                                | 3.3  | 266       |
| 20 | Effect of clouds on photolysis and oxidants in the troposphere. Journal of Geophysical Research, 2003, 108, .                                                                                                                | 3.3  | 240       |
| 21 | Climate Change Projections for the Twenty-First Century and Climate Change Commitment in the CCSM3. Journal of Climate, 2006, 19, 2597-2616.                                                                                 | 1.2  | 239       |
| 22 | Achieving Climate Change Absolute Accuracy in Orbit. Bulletin of the American Meteorological Society, 2013, 94, 1519-1539.                                                                                                   | 1.7  | 239       |
| 23 | The effect of horizontal resolution on simulation quality in the <scp>C</scp> ommunity<br><scp>A</scp> tmospheric <scp>M</scp> odel, <scp>CAM</scp> 5.1. Journal of Advances in Modeling<br>Earth Systems, 2014, 6, 980-997. | 1.3  | 233       |
| 24 | Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the<br>Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Journal of<br>Geophysical Research, 2006, 111, .  | 3.3  | 211       |
| 25 | Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. Journal of Geophysical Research, 2011, 116, .                                | 3.3  | 208       |
| 26 | Impact of ocean model resolution on CCSM climate simulations. Climate Dynamics, 2012, 39, 1303-1328.                                                                                                                         | 1.7  | 181       |
| 27 | Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature, 2015, 519, 339-343.                                                                                                               | 13.7 | 174       |
| 28 | Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the<br>January-February 1996 pre-INDOEX cruise. Journal of Geophysical Research, 1998, 103, 13827-13836.                              | 3.3  | 170       |
| 29 | Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results. Journal of Geophysical Research, 2012, 117, .                                 | 3.3  | 170       |
| 30 | Understanding the Indian Ocean Experiment (INDOEX) aerosol distributions with an aerosol assimilation. Journal of Geophysical Research, 2001, 106, 7337-7355.                                                                | 3.3  | 168       |
| 31 | The Climate Sensitivity of the Community Climate System Model Version 3 (CCSM3). Journal of Climate, 2006, 19, 2584-2596.                                                                                                    | 1.2  | 159       |
| 32 | Effective radiative forcing and adjustments in CMIP6 models. Atmospheric Chemistry and Physics, 2020, 20, 9591-9618.                                                                                                         | 1.9  | 149       |
| 33 | Parameterization of Generalized Cloud Overlap for Radiative Calculations in General Circulation<br>Models. Journals of the Atmospheric Sciences, 2001, 58, 3224-3242.                                                        | 0.6  | 134       |
| 34 | Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates. Geophysical Research Letters, 2006, 33, .                         | 1.5  | 134       |
| 35 | The ScaRaB Earth Radiation Budget Dataset. Bulletin of the American Meteorological Society, 1998, 79, 765-783.                                                                                                               | 1.7  | 130       |
| 36 | Response of the NCAR Climate System Model to Increased CO2and the Role of Physical Processes.<br>Journal of Climate, 2000, 13, 1879-1898.                                                                                    | 1.2  | 126       |

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Dust and pollution transport on global scales: Aerosol measurements and model predictions. Journal of Geophysical Research, 2001, 106, 32555-32569.                                                                                                  | 3.3  | 116       |
| 38 | A fast and objective multidimensional kernel density estimation method: fastKDE. Computational Statistics and Data Analysis, 2016, 101, 148-160.                                                                                                     | 0.7  | 107       |
| 39 | Resolution Dependence of Future Tropical Cyclone Projections of CAM5.1 in the U.S. CLIVAR Hurricane<br>Working Group Idealized Configurations. Journal of Climate, 2015, 28, 3905-3925.                                                              | 1.2  | 106       |
| 40 | A low-to-no snow future and its impacts on water resources in the western United States. Nature Reviews Earth & Environment, 2021, 2, 800-819.                                                                                                       | 12.2 | 106       |
| 41 | Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts.<br>Journal of Geophysical Research, 2002, 107, INX2 27-1.                                                                                            | 3.3  | 88        |
| 42 | Long-Term Behavior of Cloud Systems in TOGA COARE and Their Interactions with Radiative and<br>Surface Processes. Part II: Effects of Ice Microphysics on Cloud–Radiation Interaction. Journals of the<br>Atmospheric Sciences, 1999, 56, 3177-3195. | 0.6  | 85        |
| 43 | An updated parameterization for infrared emission and absorption by water vapor in the National<br>Center for Atmospheric Research Community Atmosphere Model. Journal of Geophysical Research,<br>2002, 107, ACL 17-1.                              | 3.3  | 83        |
| 44 | Climatology of Upper-Tropospheric Relative Humidity from the Atmospheric Infrared Sounder and Implications for Climate. Journal of Climate, 2006, 19, 6104-6121.                                                                                     | 1.2  | 83        |
| 45 | Atmospheric absorption during the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave<br>Experiment (ARESE). Journal of Geophysical Research, 1997, 102, 29901-29915.                                                                         | 3.3  | 77        |
| 46 | Radiative and Dynamical Feedbacks over the Equatorial Cold Tongue: Results from Nine Atmospheric<br>GCMs. Journal of Climate, 2006, 19, 4059-4074.                                                                                                   | 1.2  | 76        |
| 47 | PORT, a CESM tool for the diagnosis of radiative forcing. Geoscientific Model Development, 2013, 6, 469-476.                                                                                                                                         | 1.3  | 74        |
| 48 | An Independent Assessment of Anthropogenic Attribution Statements for Recent Extreme Temperature<br>and Rainfall Events. Journal of Climate, 2017, 30, 5-16.                                                                                         | 1.2  | 71        |
| 49 | Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of<br>Community Atmospheric Model (CAM3). Tellus, Series A: Dynamic Meteorology and Oceanography,<br>2022, 63, 884.                                | 0.8  | 68        |
| 50 | Reducing uncertainties in climate models. Science, 2018, 361, 326-327.                                                                                                                                                                               | 6.0  | 64        |
| 51 | Resolution dependence of precipitation statistical fidelity in hindcast simulations. Journal of<br>Advances in Modeling Earth Systems, 2016, 8, 976-990.                                                                                             | 1.3  | 60        |
| 52 | PARAGON: An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions. Bulletin of the American Meteorological Society, 2004, 85, 1491-1502.                                                                     | 1.7  | 59        |
| 53 | Greenhouse Gas Policy Influences Climate via Direct Effects of Land-Use Change. Journal of Climate, 2013, 26, 3657-3670.                                                                                                                             | 1.2  | 59        |
| 54 | Response of a coupled chemistry-climate model to changes in aerosol emissions: Global impact on the hydrological cycle and the tropospheric burdens of OH, ozone, and NOx. Geophysical Research Letters, 2005, 32, .                                 | 1.5  | 57        |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | "Superâ€parameterization― A better way to simulate regional extreme precipitation?. Journal of<br>Advances in Modeling Earth Systems, 2012, 4, .                                                                 | 1.3 | 57        |
| 56 | Diagnosing conditional anthropogenic contributions to heavy Colorado rainfall in September 2013.<br>Weather and Climate Extremes, 2017, 17, 1-6.                                                                 | 1.6 | 55        |
| 57 | Maximizing ENSO as a source of western US hydroclimate predictability. Climate Dynamics, 2020, 54, 351-372.                                                                                                      | 1.7 | 52        |
| 58 | The Physical Science behind Climate Change. Scientific American, 2007, 297, 64-73.                                                                                                                               | 1.0 | 51        |
| 59 | From land use to land cover: restoring the afforestation signal in a coupled integrated<br>assessment–earth system model and the implications for CMIP5 RCP simulations. Biogeosciences, 2014,<br>11, 6435-6450. | 1.3 | 49        |
| 60 | A multimodel intercomparison of resolution effects on precipitation: simulations and theory. Climate Dynamics, 2016, 47, 2205-2218.                                                                              | 1.7 | 49        |
| 61 | Observed Scaling in Clouds and Precipitation and Scale Incognizance in Regional to Global Atmospheric Models. Journal of Climate, 2013, 26, 9313-9333.                                                           | 1.2 | 46        |
| 62 | Far-infrared surface emissivity and climate. Proceedings of the National Academy of Sciences of the<br>United States of America, 2014, 111, 16297-16302.                                                         | 3.3 | 46        |
| 63 | Biospheric feedback effects in a synchronously coupled model of human and Earth systems. Nature<br>Climate Change, 2017, 7, 496-500.                                                                             | 8.1 | 46        |
| 64 | ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth System Dynamics, 2019, 10, 379-452.                                                                                 | 2.7 | 46        |
| 65 | A Hierarchical Evaluation of Regional Climate Simulations. Eos, 2013, 94, 297-298.                                                                                                                               | 0.1 | 44        |
| 66 | The integrated Earth system model version 1: formulation and functionality. Geoscientific Model Development, 2015, 8, 2203-2219.                                                                                 | 1.3 | 44        |
| 67 | ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather. Geoscientific Model Development, 2021, 14, 107-124.                           | 1.3 | 43        |
| 68 | Investigation of Regional and Seasonal Variations in Marine Boundary Layer Cloud Properties from MODIS Observations. Journal of Climate, 2008, 21, 4955-4973.                                                    | 1.2 | 42        |
| 69 | On the additivity of radiative forcing between land use change and greenhouse gases. Geophysical<br>Research Letters, 2013, 40, 4036-4041.                                                                       | 1.5 | 41        |
| 70 | Atmospheric Radiation Measurements Enhanced Shortwave Experiment (ARESE): Experimental and data<br>details. Journal of Geophysical Research, 1997, 102, 29929-29937.                                             | 3.3 | 40        |
| 71 | An integrated assessment of water-energy and climate change in sacramento, california: how strong is the nexus?. Climatic Change, 2015, 132, 223-235.                                                            | 1.7 | 40        |
| 72 | CLARREO shortwave observing system simulation experiments of the twenty-first century: Simulator design and implementation. Journal of Geophysical Research, 2011, 116, .                                        | 3.3 | 39        |

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | An estimate of the surface shortwave cloud forcing over the western Pacific during TOGA COARE.<br>Geophysical Research Letters, 1996, 23, 519-522.                                                                                                    | 1.5  | 38        |
| 74 | Reducing the computational cost of the ECF using a nuFFT: A fast and objective probability density estimation method. Computational Statistics and Data Analysis, 2014, 79, 222-234.                                                                  | 0.7  | 38        |
| 75 | The ScaRaB–Resurs Earth Radiation Budget Dataset and First Results. Bulletin of the American<br>Meteorological Society, 2001, 82, 1397-1408.                                                                                                          | 1.7  | 37        |
| 76 | Observationally derived rise in methane surface forcing mediated by water vapour trends. Nature Geoscience, 2018, 11, 238-243.                                                                                                                        | 5.4  | 37        |
| 77 | A global signature of enhanced shortwave absorption by clouds. Journal of Geophysical Research, 1998, 103, 31669-31679.                                                                                                                               | 3.3  | 35        |
| 78 | A case study of subdaily simulated and observed continental convective precipitation: CMIP5 and multiscale global climate models comparison. Geophysical Research Letters, 2013, 40, 5999-6003.                                                       | 1.5  | 33        |
| 79 | A probabilistic gridded product for daily precipitation extremes over the United States. Climate Dynamics, 2019, 53, 2517-2538.                                                                                                                       | 1.7  | 32        |
| 80 | Mechanics of apparent horizons. Physical Review D, 1992, 45, 495-498.                                                                                                                                                                                 | 1.6  | 30        |
| 81 | The robust dynamical contribution to precipitation extremes in idealized warming simulations across model resolutions. Geophysical Research Letters, 2014, 41, 2971-2978.                                                                             | 1.5  | 29        |
| 82 | A basis set for exploration of sensitivity to prescribed ocean conditions for estimating human contributions to extreme weather in CAM5.1-1degree. Weather and Climate Extremes, 2018, 19, 10-19.                                                     | 1.6  | 29        |
| 83 | Thermostat and global warming. Nature, 1992, 357, 649-649.                                                                                                                                                                                            | 13.7 | 28        |
| 84 | Indian Ocean Low Clouds during the Winter Monsoon. Journal of Climate, 2000, 13, 2028-2043.                                                                                                                                                           | 1.2  | 28        |
| 85 | Accounting for radiative forcing from albedo change in future global land-use scenarios. Climatic<br>Change, 2015, 131, 691-703.                                                                                                                      | 1.7  | 28        |
| 86 | Sensitivity of Mountain Hydroclimate Simulations in Variableâ€Resolution CESM to Microphysics and<br>Horizontal Resolution. Journal of Advances in Modeling Earth Systems, 2018, 10, 1357-1380.                                                       | 1.3  | 28        |
| 87 | Response of precipitation extremes to idealized global warming in an aqua-planet climate model:<br>towards a robust projection across different horizontal resolutions. Tellus, Series A: Dynamic<br>Meteorology and Oceanography, 2011, 63, 876-883. | 0.8  | 26        |
| 88 | Quantifying the Effects of Historical Land Cover Conversion Uncertainty on Global Carbon and Climate Estimates. Geophysical Research Letters, 2018, 45, 974-982.                                                                                      | 1.5  | 26        |
| 89 | Evaluation of extreme sub-daily precipitation in high-resolution global climate model simulations.<br>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379,<br>20190545.                                  | 1.6  | 26        |
| 90 | Equity is more important for the social cost of methane than climate uncertainty. Nature, 2021, 592, 564-570.                                                                                                                                         | 13.7 | 26        |

| #   | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Effects of increased near-infrared absorption by water vapor on the climate system. Journal of<br>Geophysical Research, 2006, 111, .                                                                                                 | 3.3  | 25        |
| 92  | Uncertainties in Atmospheric River Lifecycles by Detection Algorithms: Climatology and Variability.<br>Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033711.                                                     | 1.2  | 24        |
| 93  | Cloud properties leading to highly reflective tropical cirrus: Interpretations from CEPEX, TOGA<br>COARE, and Kwajalein, Marshall Islands. Journal of Geophysical Research, 1998, 103, 8805-8812.                                    | 3.3  | 23        |
| 94  | Sensitivity of <scp>MJO</scp> propagation to a robust positive <scp>I</scp> ndian <scp>O</scp> cean<br>dipole event in the superparameterized <scp>CAM</scp> . Journal of Advances in Modeling Earth<br>Systems, 2015, 7, 1901-1917. | 1.3  | 23        |
| 95  | Validation of Clear-Sky Fluxes for Tropical Oceans from the Earth Radiation Budget Experiment.<br>Journal of Climate, 1995, 8, 569-578.                                                                                              | 1.2  | 22        |
| 96  | Radiative effects of convection in the tropical Pacific. Journal of Geophysical Research, 1996, 101, 14999-15012.                                                                                                                    | 3.3  | 22        |
| 97  | Forest response to increased disturbance in the central Amazon and comparison to western Amazonian forests. Biogeosciences, 2014, 11, 5773-5794.                                                                                     | 1.3  | 22        |
| 98  | Simultaneous characterization of mesoscale and convectiveâ€scale tropical rainfall extremes and their<br>dynamical and thermodynamic modes of change. Journal of Advances in Modeling Earth Systems, 2017,<br>9, 2103-2119.          | 1.3  | 22        |
| 99  | First-Order Structure Function Analysis of Statistical Scale Invariance in the AIRS-Observed Water<br>Vapor Field. Journal of Climate, 2012, 25, 5538-5555.                                                                          | 1.2  | 20        |
| 100 | The spectroscopic foundation of radiative forcing of climate by carbon dioxide. Geophysical Research<br>Letters, 2016, 43, 5318-5325.                                                                                                | 1.5  | 20        |
| 101 | Evaluation of hydrologic components of community land model 4 and bias identification.<br>International Journal of Applied Earth Observation and Geoinformation, 2016, 48, 5-16.                                                     | 1.4  | 19        |
| 102 | Monitoring Methane Emissions from Oil and Gas Operations. , 2022, 1, .                                                                                                                                                               |      | 19        |
| 103 | Direct Radiometric Observations of the Water Vapor Greenhouse Effect Over the Equatorial Pacific Ocean. Science, 1997, 275, 1773-1776.                                                                                               | 6.0  | 18        |
| 104 | An Intercomparison of GCM and RCM Dynamical Downscaling for Characterizing the<br>Hydroclimatology of California and Nevada. Journal of Hydrometeorology, 2018, 19, 1485-1506.                                                       | 0.7  | 18        |
| 105 | A thermostat in the tropics?. Nature, 1993, 361, 410-411.                                                                                                                                                                            | 13.7 | 17        |
| 106 | Relating Satellite-Observed Cloud Properties from MODIS to Meteorological Conditions for Marine<br>Boundary Layer Clouds. Journal of Climate, 2010, 23, 1374-1391.                                                                   | 1.2  | 17        |
| 107 | Simulation studies for the detection of changes in broadband albedo and shortwave nadir reflectance spectra under a climate change scenario. Journal of Geophysical Research, 2011, 116, n/a-n/a.                                    | 3.3  | 17        |
| 108 | Climate response due to carbonaceous aerosols and aerosol-induced SST effects in NCAR community atmospheric model CAM3.5. Atmospheric Chemistry and Physics, 2013, 13, 7489-7510.                                                    | 1.9  | 17        |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Large regional shortwave forcing by anthropogenic methane informed by Jovian observations. Science Advances, 2018, 4, eaas9593.                                                                                                           | 4.7 | 16        |
| 110 | Relationship between clear-sky atmospheric greenhouse effect and deep convection during the<br>Central Equatorial Pacific Experiment: Model calculations and satellite observations. Journal of<br>Geophysical Research, 1994, 99, 25891. | 3.3 | 15        |
| 111 | The role of water vapor and convection during the Central Equatorial Pacific Experiment from observations and model simulations. Journal of Geophysical Research, 1995, 100, 26229.                                                       | 3.3 | 15        |
| 112 | Origins of climate model discrepancies in atmospheric shortwave absorption and global precipitation changes. Geophysical Research Letters, 2015, 42, 8749-8757.                                                                           | 1.5 | 15        |
| 113 | Quantitative comparison of the variability in observed and simulated shortwave reflectance.<br>Atmospheric Chemistry and Physics, 2013, 13, 3133-3147.                                                                                    | 1.9 | 14        |
| 114 | What are the effects of Agro-Ecological Zones and land use region boundaries on land resource projection using the Global Change Assessment Model?. Environmental Modelling and Software, 2016, 85, 246-265.                              | 1.9 | 14        |
| 115 | Global simulations of aerosol amount and size using MODIS observations assimilated with an Ensemble Kalman Filter. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,780.                                                     | 1.2 | 13        |
| 116 | Pan-spectral observing system simulation experiments of shortwave reflectance and long-wave radiance for climate model evaluation. Geoscientific Model Development, 2015, 8, 1943-1954.                                                   | 1.3 | 13        |
| 117 | Sources of Subseasonalâ€Toâ€Seasonal Predictability of Atmospheric Rivers and Precipitation in the<br>Western United States. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034053.                                    | 1.2 | 13        |
| 118 | The theory of magnetohydrodynamic wave generation by localized sources. II - Collisionless dissipation of wave packets. Astrophysical Journal, 1989, 343, 499.                                                                            | 1.6 | 13        |
| 119 | Characterization of extreme precipitation within atmospheric river events over California. Advances in Statistical Climatology, Meteorology and Oceanography, 2015, 1, 45-57.                                                             | 0.6 | 13        |
| 120 | Detection of atmospheric rivers with inline uncertainty quantification: TECA-BARD v1.0.1.<br>Geoscientific Model Development, 2020, 13, 6131-6148.                                                                                        | 1.3 | 13        |
| 121 | Hurricanes in an aquaplanet world: Implications of the impacts of external forcing and model horizontal resolution. Journal of Advances in Modeling Earth Systems, 2013, 5, 134-145.                                                      | 1.3 | 12        |
| 122 | Detected Changes in Precipitation Extremes at Their Native Scales Derived from In Situ Measurements.<br>Journal of Climate, 2019, 32, 8087-8109.                                                                                          | 1.2 | 12        |
| 123 | The theory of magnetohydrodynamic wave generation by localized sources. III - Efficiency of plasma heating by dissipation of far-field waves. Astrophysical Journal, 1992, 384, 319.                                                      | 1.6 | 12        |
| 124 | The Influence of Ocean Coupling on Simulated and Projected Tropical Cyclone Precipitation in the<br>HighResMIP–PRIMAVERA Simulations. Geophysical Research Letters, 2021, 48, e2021GL094801.                                              | 1.5 | 12        |
| 125 | Thermal production of superheavy magnetic monopoles in the new inflationary-Universe scenario.<br>Physical Review D, 1984, 29, 2158-2161.                                                                                                 | 1.6 | 11        |
| 126 | Comparison of Tropical Ocean–Atmosphere Fluxes with the NCAR Community Climate Model CCM3*.<br>Journal of Climate, 1997, 10, 3047-3058.                                                                                                   | 1.2 | 11        |

8

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Using the PARAGON Framework to Establish an Accurate, Consistent, and Cohesive Long-Term Aerosol<br>Record. Bulletin of the American Meteorological Society, 2004, 85, 1535-1548.             | 1.7 | 11        |
| 128 | Using surface remote sensors to derive radiative characteristics of Mixed-Phase Clouds: an example from M-PACE. Atmospheric Chemistry and Physics, 2011, 11, 11937-11949.                     | 1.9 | 11        |
| 129 | The theory of magnetohydrodynamic wave generation by localized sources. I - General asymptotic theory. Astrophysical Journal, 1989, 337, 548.                                                 | 1.6 | 11        |
| 130 | Effects of Enhanced Shortwave Absorption on Coupled Simulations of the Tropical Climate System.<br>Journal of Climate, 2001, 14, 1147-1165.                                                   | 1.2 | 10        |
| 131 | Quantifying the influence of natural climate variability on in situ measurements of seasonal total and extreme daily precipitation. Climate Dynamics, 2021, 56, 3205-3230.                    | 1.7 | 10        |
| 132 | Extension of the weak-line approximation and application to correlated-k methods. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 1525-1532.                          | 1.1 | 9         |
| 133 | TECA: Petascale Pattern Recognition for Climate Science. Lecture Notes in Computer Science, 2015, ,<br>426-436.                                                                               | 1.0 | 9         |
| 134 | Local and Remote Climate Impacts from Expansion of Woody Biomass for Bioenergy Feedstock in the<br>Southeastern United States. Journal of Climate, 2012, 25, 7643-7659.                       | 1.2 | 8         |
| 135 | A New Paradigm for Diagnosing Contributions to Model Aerosol Forcing Error. Geophysical Research<br>Letters, 2017, 44, 12,004.                                                                | 1.5 | 8         |
| 136 | Prognostic Power of Extreme Rainfall Scaling Formulas Across Space and Time Scales. Journal of Advances in Modeling Earth Systems, 2018, 10, 3252-3267.                                       | 1.3 | 8         |
| 137 | Distortions of the Rain Distribution With Warming, With and Without Selfâ€Aggregation. Journal of<br>Advances in Modeling Earth Systems, 2021, 13, e2020MS002256.                             | 1.3 | 8         |
| 138 | Comparison of ScaRaB, GOES 8, aircraft, and surface observations of the absorption of solar radiation by clouds. Journal of Geophysical Research, 2002, 107, ACL 1-1-ACL 1-6.                 | 3.3 | 7         |
| 139 | On the Usage of Spectral and Broadband Satellite Instrument Measurements to Differentiate Climate<br>Models with Different Cloud Feedback Strengths. Journal of Climate, 2013, 26, 6561-6574. | 1.2 | 7         |
| 140 | Quantifying Humanâ€Mediated Carbon Cycle Feedbacks. Geophysical Research Letters, 2018, 45, 11,370.                                                                                           | 1.5 | 7         |
| 141 | Detecting tropical convection using AVHRR satellite data. Journal of Geophysical Research, 1999, 104, 9213-9228.                                                                              | 3.3 | 6         |
| 142 | Interannual variability of the Earth's spectral solar reflectance from measurements and simulations.<br>Journal of Geophysical Research D: Atmospheres, 2014, 119, 4458-4470.                 | 1.2 | 6         |
| 143 | The spatial scale dependence of water vapor variability inferred from observations from a very tall tower. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9822-9837.              | 1.2 | 6         |
| 144 | Statistical uncertainty of eddy covariance CO2 fluxes inferred using a residual bootstrap approach.<br>Agricultural and Forest Meteorology, 2015, 206, 163-171.                               | 1.9 | 6         |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | The Impact of ARM on Climate Modeling. Meteorological Monographs, 2016, 57, 26.1-26.16.                                                                                                                                       | 5.0 | 6         |
| 146 | Quantitative Precipitation Estimation of Extremes in CONUS With Radar Data. Geophysical Research Letters, 2021, 48, e2021GL094697.                                                                                            | 1.5 | 6         |
| 147 | Temporal variability of observed and simulated hyperspectral reflectance. Journal of Geophysical<br>Research D: Atmospheres, 2014, 119, 10,262.                                                                               | 1.2 | 5         |
| 148 | Optimization of the Eddyâ€Diffusivity/Massâ€Flux Shallow Cumulus and Boundaryâ€Layer Parameterization<br>Using Surrogate Models. Journal of Advances in Modeling Earth Systems, 2019, 11, 402-416.                            | 1.3 | 5         |
| 149 | Monitoring methane emissions from oil and gas operations <sup>‡</sup> . Optics Express, 2022, 30, 24326.                                                                                                                      | 1.7 | 5         |
| 150 | Comment on the Paper "An inquiry into the cirrus-cloud thermostat effect for tropical sea surface<br>temperature―by K. M. Lau, C. H. Sui, M. D. Chou and W. K. Tau. Geophysical Research Letters, 1994, 21,<br>1185-1186.     | 1.5 | 4         |
| 151 | Determination of surface heating by convective cloud systems in the central equatorial Pacific from surface and satellite measurements. Journal of Geophysical Research, 2000, 105, 14807-14821.                              | 3.3 | 4         |
| 152 | Global transport of passive tracers in conventional and superparameterized climate models:<br>Evaluation of multiâ€scale methods. Journal of Advances in Modeling Earth Systems, 2012, 4, .                                   | 1.3 | 4         |
| 153 | Spherical Harmonic Spectral Estimation on Arbitrary Grids. Monthly Weather Review, 2017, 145, 3355-3363.                                                                                                                      | 0.5 | 4         |
| 154 | Constraining and Characterizing the Size of Atmospheric Rivers: A Perspective Independent From the<br>Detection Algorithm. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033746.                          | 1.2 | 4         |
| 155 | A framework for detection and attribution of regional precipitation change: Application to the United States historical record. Climate Dynamics, 2023, 60, 705-741.                                                          | 1.7 | 4         |
| 156 | Microphysical Sensitivity of Superparameterized Precipitation Extremes in the Contiguous United<br>States Due to Feedbacks on Large cale Circulation. Earth and Space Science, 2020, 7, e2019EA000731.                        | 1.1 | 3         |
| 157 | Global dust simulations in the multiscale modeling framework. Journal of Advances in Modeling<br>Earth Systems, 2013, 5, 15-31.                                                                                               | 1.3 | 2         |
| 158 | Progress in Fast, Accurate Multi-scale Climate Simulations. Procedia Computer Science, 2015, 51, 2006-2015.                                                                                                                   | 1.2 | 2         |
| 159 | ENSO regulation of far―and midâ€infrared contributions to clearâ€sky OLR. Geophysical Research Letters,<br>2016, 43, 8751-8759.                                                                                               | 1.5 | 2         |
| 160 | An Investigation Into Biases in Instantaneous Aerosol Radiative Effects Calculated by Shortwave<br>Parameterizations in Two Earth System Models. Journal of Geophysical Research D: Atmospheres, 2021,<br>126, e2019JD032323. | 1.2 | 2         |
| 161 | From research to action on climate change. Frontiers in Ecology and the Environment, 2015, 13, 459-459.                                                                                                                       | 1.9 | 0         |
| 162 | Clobal Microphysical Sensitivity of Superparameterized Precipitation Extremes. Earth and Space Science, 2021, 8, e2020EA001308.                                                                                               | 1.1 | 0         |

| #   | Article                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Chapter 3. Science and Pathways for Bending the Curve. Collabra, 2016, 2, .                                       | 1.3 | 0         |
| 164 | Observing Climate Change With Both Shortwave and Longwave Hyperspectral Satellite<br>Instrumentation. , 2016, , . |     | 0         |