List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4532569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sequence Determinants of the Aggregation of Proteins Within Condensates Generated by Liquid-liquid Phase Separation. Journal of Molecular Biology, 2022, 434, 167201.	4.2	62
2	FuzDB: a new phase in understanding fuzzy interactions. Nucleic Acids Research, 2022, 50, D509-D517.	14.5	25
3	Adventures on the Routes of Protein Evolution—In Memoriam Dan Salah Tawfik (1955–2021). Journal of Molecular Biology, 2022, 434, 167462.	4.2	6
4	Molecular Determinants of Selectivity in Disordered Complexes May Shed Light on Specificity in Protein Condensates. Biomolecules, 2022, 12, 92.	4.0	3
5	FuzDrop on AlphaFold: visualizing the sequence-dependent propensity of liquid–liquid phase separation and aggregation of proteins. Nucleic Acids Research, 2022, 50, W337-W344.	14.5	44
6	Electrostatics tunes protein interactions to context. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	7
7	Are casein micelles extracellular condensates formed by liquidâ€liquid phase separation?. FEBS Letters, 2022, 596, 2072-2085.	2.8	5
8	MobiDB: intrinsically disordered proteins in 2021. Nucleic Acids Research, 2021, 49, D361-D367.	14.5	183
9	Spot in a drop: mutations in aberrant condensates. Nature Reviews Molecular Cell Biology, 2021, 22, 162-163.	37.0	3
10	Fuzziness and Frustration in the Energy Landscape of Protein Folding, Function, and Assembly. Accounts of Chemical Research, 2021, 54, 1251-1259.	15.6	88
11	Frustration in Fuzzy Protein Complexes Leads to Interaction Versatility. Journal of Physical Chemistry B, 2021, 125, 2513-2520.	2.6	52
12	Generic nature of the condensed states of proteins. Nature Cell Biology, 2021, 23, 587-594.	10.3	94
13	Observation of an α-synuclein liquid droplet state and its maturation into Lewy body-like assemblies. Journal of Molecular Cell Biology, 2021, 13, 282-294.	3.3	65
14	Protein interactions in liquid-liquid phase separation. Journal of Molecular Biology, 2021, 434, 167388.	4.2	1
15	Rapid Biophysical Characterization and NMR Spectroscopy Structural Analysis of Small Proteins from Bacteria and Archaea. ChemBioChem, 2020, 21, 1178-1187.	2.6	24
16	Patterns of Dynamics Comprise a Conserved Evolutionary Trait. Journal of Molecular Biology, 2020, 432, 497-507.	4.2	8
17	Classifying the Binding Modes of Disordered Proteins. International Journal of Molecular Sciences, 2020, 21, 8615.	4.1	49
18	Asymmetric dynamic coupling promotes alternative evolutionary pathways in an enzyme dimer. Scientific Reports, 2020, 10, 18866.	3.3	2

#	Article	IF	CITATIONS
19	Sequence-based prediction of protein binding mode landscapes. PLoS Computational Biology, 2020, 16, e1007864.	3.2	41
20	Sequence-Based Prediction of Fuzzy Protein Interactions. Journal of Molecular Biology, 2020, 432, 2289-2303.	4.2	77
21	Fuzzy protein theory for disordered proteins. Biochemical Society Transactions, 2020, 48, 2557-2564.	3.4	16
22	Widespread occurrence of the droplet state of proteins in the human proteome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33254-33262.	7.1	178
23	Editorial overview: Dynamic protein interactions — from complexes to molecular machines. Current Opinion in Structural Biology, 2019, 56, vi-viii.	5.7	1
24	Specific and Fuzzy Interactions Cooperate in Modulating Protein Half-Life. Journal of Molecular Biology, 2019, 431, 1700-1707.	4.2	2
25	Fold or not to fold upon binding — does it really matter?. Current Opinion in Structural Biology, 2019, 54, 19-25.	5.7	73
26	Fuzziness in Protein Interactions—A Historical Perspective. Journal of Molecular Biology, 2018, 430, 2278-2287.	4.2	118
27	Protein Phase Separation: A New Phase in Cell Biology. Trends in Cell Biology, 2018, 28, 420-435.	7.9	1,439
28	Simulations of Higher-Order Protein Organizations Using a Fuzzy Framework. Complexity, 2018, 2018, 1-10.	1.6	4
29	Experimental Characterization of Fuzzy Protein Assemblies: Interactions of Paramyxoviral NTAIL Domains With Their Functional Partners. Methods in Enzymology, 2018, 611, 137-192.	1.0	8
30	Towards a Stochastic Paradigm: From Fuzzy Ensembles to Cellular Functions. Molecules, 2018, 23, 3008.	3.8	18
31	Simultaneous quantification of protein order and disorder. Nature Chemical Biology, 2017, 13, 339-342.	8.0	113
32	Fuzziness enables context dependence of protein interactions. FEBS Letters, 2017, 591, 2682-2695.	2.8	60
33	FuzDB: database of fuzzy complexes, a tool to develop stochastic structure-function relationships for protein complexes and higher-order assemblies. Nucleic Acids Research, 2017, 45, D228-D235.	14.5	96
34	Computational analyses of the effect of novel amino acid clusters of human transglutaminase 2 on its structure and function. Amino Acids, 2017, 49, 605-614.	2.7	4
35	Genomic variants reveal differential evolutionary constraints on human transglutaminases and point towards unrecognized significance of transglutaminase 2. PLoS ONE, 2017, 12, e0172189.	2.5	8
36	The Structure and Dynamics of Higher-Order Assemblies: Amyloids, Signalosomes, and Granules. Cell, 2016, 165, 1055-1066.	28.9	311

#	Article	IF	CITATIONS
37	A Derived Allosteric Switch Underlies the Evolution of Conditional Cooperativity between HOXA11 and FOXO1. Cell Reports, 2016, 15, 2097-2108.	6.4	25
38	Fuzzy regions in an intrinsically disordered protein impair protein–protein interactions. FEBS Journal, 2016, 283, 576-594.	4.7	43
39	Physiological, pathological, and structural implications of non-enzymatic protein–protein interactions of the multifunctional human transglutaminase 2. Cellular and Molecular Life Sciences, 2015, 72, 3009-3035.	5.4	52
40	Fuzziness endows viral motif-mimicry. Molecular BioSystems, 2015, 11, 2821-2829.	2.9	11
41	Fuzzy complexes: Specific binding without complete folding. FEBS Letters, 2015, 589, 2533-2542.	2.8	177
42	Fuzziness ―Disorder in Protein Complexes ―Imparts Versatility on Signalling. FASEB Journal, 2015, 29, 372.1.	0.5	0
43	Intrinsically Disordered Segments Affect Protein Half-Life in the Cell and during Evolution. Cell Reports, 2014, 8, 1832-1844.	6.4	192
44	The role of reorganization energy in rational enzyme design. Current Opinion in Chemical Biology, 2014, 21, 34-41.	6.1	27
45	Disordered Proteinaceous Machines. Chemical Reviews, 2014, 114, 6806-6843.	47.7	109
46	Classification of Intrinsically Disordered Regions and Proteins. Chemical Reviews, 2014, 114, 6589-6631.	47.7	1,618
47	Alternative splicing of intrinsically disordered regions and rewiring of protein interactions. Current Opinion in Structural Biology, 2013, 23, 443-450.	5.7	166
48	Identification of a specific one amino acid change in recombinant human transglutaminase 2 that regulates its activity and calcium sensitivity. Biochemical Journal, 2013, 455, 261-272.	3.7	34
49	What's in a name? Why these proteins are intrinsically disordered. Intrinsically Disordered Proteins, 2013, 1, e24157.	1.9	226
50	Tissue-Specific Splicing of Disordered Segments that Embed Binding Motifs Rewires Protein Interaction Networks. Molecular Cell, 2012, 46, 871-883.	9.7	344
51	Fuzziness: linking regulation to protein dynamics. Molecular BioSystems, 2012, 8, 168-177.	2.9	155
52	QM/MM simulation of liquid water with an adaptive quantum region. Physical Chemistry Chemical Physics, 2012, 14, 646-656.	2.8	80
53	Fuzzy Complexes: A More Stochastic View of Protein Function. Advances in Experimental Medicine and Biology, 2012, 725, 1-14.	1.6	183
54	Interactions via intrinsically disordered regions: What kind of motifs?. IUBMB Life, 2012, 64, 513-520.	3.4	76

#	Article	IF	CITATIONS
55	Active site residue involvement in monoamine or diamine oxidation catalysed by pea seedling amine oxidase. FEBS Journal, 2011, 278, 1232-1243.	4.7	6
56	Dynamic protein–DNA recognition: beyond what can be seen. Trends in Biochemical Sciences, 2011, 36, 415-423.	7.5	137
57	Fuzzy interactome: the limitations of models in molecular biology. Trends in Biochemical Sciences, 2009, 34, 3.	7.5	11
58	Close encounters of the third kind: disordered domains and the interactions of proteins. BioEssays, 2009, 31, 328-335.	2.5	229
59	Evaluating Boundary Dependent Errors in QM/MM Simulations. Journal of Physical Chemistry B, 2009, 113, 5728-5735.	2.6	53
60	The Energy Gap as a Universal Reaction Coordinate for the Simulation of Chemical Reactions. Journal of Physical Chemistry B, 2009, 113, 7867-7873.	2.6	36
61	On the Divalent Metal Ion Dependence of DNA Cleavage by Restriction Endonucleases of the EcoRI Family. Journal of Molecular Biology, 2009, 393, 140-160.	4.2	59
62	Disordered Tails of Homeodomains Facilitate DNA Recognition by Providing a Trade-Off between Folding and Specific Binding. Journal of the American Chemical Society, 2009, 131, 15084-15085.	13.7	61
63	Fuzzy Complexes: Polymorphism And Structural Disorder In Protein-protein Interactions. Biophysical Journal, 2009, 96, 319a.	0.5	Ο
64	Malleable machines take shape in eukaryotic transcriptional regulation. Nature Chemical Biology, 2008, 4, 728-737.	8.0	192
65	Fuzzy complexes: polymorphism and structural disorder in protein–protein interactions. Trends in Biochemical Sciences, 2008, 33, 2-8.	7.5	942
66	Malleable Machines in Transcription Regulation: The Mediator Complex. PLoS Computational Biology, 2008, 4, e1000243.	3.2	109
67	Assessing Conservation of Disordered Regions in Proteins. The Open Proteomics Journal, 2008, 1, 46-53.	0.4	15
68	Local structural disorder imparts plasticity on linear motifs. Bioinformatics, 2007, 23, 950-956.	4.1	376
69	Electrostatic versus Nonelectrostatic Effects in DNA Sequence Discrimination by Divalent Ions Mg2+and Mn2+. Journal of Physical Chemistry B, 2007, 111, 6272-6279.	2.6	23
70	Probing the Two-Metal Ion Mechanism in the Restriction Endonuclease BamHI. Biochemistry, 2007, 46, 14514-14523.	2.5	27
71	Metal-binding sites at the active site of restriction endonuclease BamHI can conform to a one-ion mechanism. Biological Chemistry, 2007, 388, 73-8.	2.5	10
72	An EcoRl–Rsrl chimeric restriction endonuclease retains parental sequence specificity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 583-594.	2.3	3

#	Article	IF	CITATIONS
73	Phosphorylation-induced transient intrinsic structure in the kinase-inducible domain of CREB facilitates its recognition by the KIX domain of CBP. Proteins: Structure, Function and Bioinformatics, 2006, 64, 749-757.	2.6	31
74	Flexible segments modulate co-folding of dUTPase and nucleocapsid proteins. Nucleic Acids Research, 2006, 35, 495-505.	14.5	42
75	Type II restriction endonucleases: structure and mechanism. Cellular and Molecular Life Sciences, 2005, 62, 685-707.	5.4	452
76	Flexibility of prolyl oligopeptidase: Molecular dynamics and molecular framework analysis of the potential substrate pathways. Proteins: Structure, Function and Bioinformatics, 2005, 60, 504-512.	2.6	51
77	Interfacial Water as a "Hydration Fingerprint―in the Noncognate Complex of BamHI. Biophysical Journal, 2005, 89, 903-911.	0.5	49
78	Noncovalent Cross-links in Context with Other Structural and Functional Elements of Proteinsâ€. Journal of Chemical Information and Computer Sciences, 2004, 44, 347-351.	2.8	7
79	Preformed Structural Elements Feature in Partner Recognition by Intrinsically Unstructured Proteins. Journal of Molecular Biology, 2004, 338, 1015-1026.	4.2	494
80	Role of Base Flipping in Specific Recognition of Damaged DNA by Repair Enzymes. Journal of Molecular Biology, 2002, 323, 823-834.	4.2	64
81	Protein stability indicates divergent evolution of PD-(D/E)XK type II restriction endonucleases. Protein Science, 2002, 11, 1978-1983.	7.6	17
82	Checking nucleic acid crystal structures. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 813-828.	2.5	12
83	Crystallization and preliminary X-ray analysis of porcine muscle prolyl oligopeptidase. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 1414-1415.	2.5	4
84	Origin of the Catalytic Power of Acetylcholinesterase:Â Computer Simulation Studies. Journal of the American Chemical Society, 1998, 120, 183-194.	13.7	116
85	Role of electrostatics at the catalytic metal binding site in xylose isomerase action: Ca2+-inhibition and metal competence in the double mutant D254E/D256E. , 1997, 28, 183-193.		19
86	Molecular modelling of xylose isomerase catalysis: the role of electrostatics and charge transfer to metals. Protein Engineering, Design and Selection, 1995, 8, 925-933.	2.1	21
87	Editorial: Fuzzy Interactions: Many Facets of Protein Binding. Frontiers in Molecular Biosciences, 0, 9,	3.5	3