Vincent Castric

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4531520/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances. Molecular Ecology, 2004, 13, 2873-2889.	3.9	193
2	identix, a software to test for relatedness in a population using permutation methods. Molecular Ecology Notes, 2002, 2, 611-614.	1.7	186
3	LANDSCAPE STRUCTURE AND HIERARCHICAL GENETIC DIVERSITY IN THE BROOK CHARR, SALVELINUS FONTINALIS. Evolution; International Journal of Organic Evolution, 2001, 55, 1016.	2.3	156
4	The Transition to Self-Compatibility in Arabidopsis thaliana and Evolution within S-Haplotypes over 10 Myr. Molecular Biology and Evolution, 2006, 23, 1741-1750.	8.9	154
5	Repeated Adaptive Introgression at a Gene under Multiallelic Balancing Selection. PLoS Genetics, 2008, 4, e1000168.	3.5	151
6	Plant selfâ€incompatibility systems: a molecular evolutionary perspective. New Phytologist, 2005, 168, 61-69.	7.3	136
7	The Rise and Fall of Isolation by Distance in the Anadromous Brook Charr (<i>Salvelinus fontinalis</i>) Tj ETQq1 1	0,784314 2.9	1 rgBT /Over 132
8	Nuclear and chloroplast DNA phylogeography reveals vicariance among European populations of the model species for the study of metal tolerance, <i>Arabidopsis halleri</i> (Brassicaceae). New Phytologist, 2012, 193, 916-928.	7.3	112
9	Heterozygote deficiencies in small lacustrine populations of brook charr Salvelinus Fontinalis Mitchill (Pisces, Salmonidae): a test of alternative hypotheses. Heredity, 2002, 89, 27-35.	2.6	109
10	Variability of zinc tolerance among and within populations of the pseudometallophyte species <i>Arabidopsis halleri</i> and possible role of directional selection. New Phytologist, 2010, 185, 130-142.	7.3	106
11	DNA Binding of the Cell Cycle Transcriptional Regulator GcrA Depends on N6-Adenosine Methylation in Caulobacter crescentus and Other Alphaproteobacteria. PLoS Genetics, 2013, 9, e1003541.	3.5	104
12	Contrasted Patterns of Molecular Evolution in Dominant and Recessive Self-Incompatibility Haplotypes in Arabidopsis. PLoS Genetics, 2012, 8, e1002495.	3.5	91
13	Does Speciation between Arabidopsis halleri and Arabidopsis lyrata Coincide with Major Changes in a Molecular Target of Adaptation?. PLoS ONE, 2011, 6, e26872.	2.5	87
14	Can we continue to neglect genomic variation in introgression rates when inferring the history of speciation? A case study in a <i><scp>M</scp>ytilus</i> hybrid zone. Journal of Evolutionary Biology, 2014, 27, 1662-1675.	1.7	79
15	The evolution of selfing from outcrossing ancestors in Brassicaceae: what have we learned from variation at the <i>Sâ€</i> locus?. Journal of Evolutionary Biology, 2014, 27, 1372-1385.	1.7	76
16	Genome sequencing reveals the origin of the allotetraploid <i>Arabidopsis suecica</i> . Molecular Biology and Evolution, 2017, 34, msw299.	8.9	73
17	A General Model to Explore Complex Dominance Patterns in Plant Sporophytic Self-Incompatibility Systems. Genetics, 2007, 175, 1351-1369.	2.9	70
18	Individual assignment test reveals differential restriction to dispersal between two salmonids despite no increase of genetic differences with distance. Molecular Ecology, 2004, 13, 1299-1312.	3.9	68

VINCENT CASTRIC

#	Article	IF	CITATIONS
19	Structural and Content Diversity of Mitochondrial Genome in Beet: A Comparative Genomic Analysis. Genome Biology and Evolution, 2011, 3, 723-736.	2.5	67
20	Evolution under strong balancing selection: how many codons determine specificity at the female self-incompatibility gene SRK in Brassicaceae?. BMC Evolutionary Biology, 2007, 7, 132.	3.2	66
21	DOES FREQUENCY-DEPENDENT SELECTION WITH COMPLEX DOMINANCE INTERACTIONS ACCURATELY PREDICT ALLELIC FREQUENCIES AT THE SELF-INCOMPATIBILITY LOCUS IN <i>ARABIDOPSIS HALLERI</i> ?. Evolution; International Journal of Organic Evolution, 2008, 62, 2545-2557.	2.3	66
22	Dominance hierarchy arising from the evolution of a complex small RNA regulatory network. Science, 2014, 346, 1200-1205.	12.6	61
23	Genomic pattern of adaptive divergence in <i>Arabidopsis halleri</i> , a model species for tolerance to heavy metal. Molecular Ecology, 2009, 18, 2050-2062.	3.9	59
24	Recent and Ancient Signature of Balancing Selection around the S-Locus in Arabidopsis halleri and A. lyrata. Molecular Biology and Evolution, 2013, 30, 435-447.	8.9	55
25	Origin and Diversification Dynamics of Self-Incompatibility Haplotypes. Genetics, 2011, 188, 625-636.	2.9	51
26	Patterns of Polymorphism at the Self-Incompatibility Locus in 1,083 Arabidopsis thaliana Genomes. Molecular Biology and Evolution, 2017, 34, 1878-1889.	8.9	48
27	Molecular Evolution within and between Self-Incompatibility Specificities. Molecular Biology and Evolution, 2010, 27, 11-20.	8.9	47
28	High paternal diversity in the selfâ€incompatible herb <i>Arabidopsis halleri</i> despite clonal reproduction and spatially restricted pollen dispersal. Molecular Ecology, 2008, 17, 1577-1588.	3.9	44
29	EVOLUTION OF DOMINANCE IN SPOROPHYTIC SELF-INCOMPATIBILITY SYSTEMS: I. GENETIC LOAD AND COEVOLUTION OF LEVELS OF DOMINANCE IN POLLEN AND PISTIL. Evolution; International Journal of Organic Evolution, 2009, 63, 2427-2437.	2.3	44
30	Unequal allelic frequencies at the selfâ€incompatibility locus within local populations of <i>Prunus avium</i> L.: an effect of population structure?. Journal of Evolutionary Biology, 2008, 21, 889-899.	1.7	42
31	Effect of balancing selection on spatial genetic structure within populations: theoretical investigations on the self-incompatibility locus and empirical studies in Arabidopsis halleri. Heredity, 2011, 106, 319-329.	2.6	42
32	Genetic heterogeneity among Eurytemora affinis populations in Western Europe. Marine Biology, 2011, 158, 1841-1856.	1.5	41
33	Physiological, Endocrine, and Genetic Bases of Anadromy in the Brook Charr, Salvelinus Fontinalis, of the Laval River (Québec, Canada). Environmental Biology of Fishes, 2002, 64, 229-242.	1.0	37
34	Self-Incompatibility in Brassicaceae: Identification and Characterization of <i>SRK</i> -Like Sequences Linked to the <i>S</i> -Locus in the Tribe Biscutelleae. G3: Genes, Genomes, Genetics, 2014, 4, 983-992.	1.8	32
35	Hitch-hiking to a locus under balancing selection: high sequence diversity and low population subdivision at the S-locus genomic region in <i>Arabidopsis halleri</i> . Genetical Research, 2008, 90, 37-46.	0.9	31
36	Identification and expression profile of gene transcripts differentially expressed during metallic exposure in Eisenia fetida coelomocytes. Developmental and Comparative Immunology, 2008, 32, 1441-1453.	2.3	29

VINCENT CASTRIC

#	Article	IF	CITATIONS
37	Evolution of selfâ€incompatibility in the Brassicaceae: Lessons from a textbook example of natural selection. Evolutionary Applications, 2020, 13, 1279-1297.	3.1	29
38	Evidence for Fisher's dominance theory: how many â€~special cases'?. Trends in Genetics, 2011, 27, 441-445.	6.7	28
39	GENETIC ARCHITECTURE OF INBREEDING DEPRESSION AND THE MAINTENANCE OF GAMETOPHYTIC SELFâ€INCOMPATIBILITY. Evolution; International Journal of Organic Evolution, 2014, 68, 3317-3324.	2.3	28
40	The integrative biology of genetic dominance. Biological Reviews, 2021, 96, 2925-2942.	10.4	27
41	Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes. Mobile DNA, 2019, 10, 30.	3.6	26
42	Maintenance of Adaptive Dynamics and No Detectable Load in a Range-Edge Outcrossing Plant Population. Molecular Biology and Evolution, 2021, 38, 1820-1836.	8.9	24
43	Genetic basis and timing of a major mating system shift in <i>Capsella</i> . New Phytologist, 2019, 224, 505-517.	7.3	23
44	Genetic and morphological heterogeneity among populations of Eurytemora affinis (Crustacea:) Tj ETQq0 0 0 rgB	T /Overlo 0.2	ck 10 Tf 50 4
45	Genotyping and De Novo Discovery of Allelic Variants at the Brassicaceae Self-Incompatibility Locus from Short-Read Sequencing Data. Molecular Biology and Evolution, 2020, 37, 1193-1201.	8.9	19
46	Wholeâ€genome sequencing and genome regions of special interest: Lessons from major histocompatibility complex, sex determination, and plant selfâ€incompatibility. Molecular Ecology, 2021, 30, 6072-6086.	3.9	17
47	Disentangling the effects of mating systems and mutation rates on cytoplamic diversity in gynodioecious Silene nutans and dioecious Silene otites. Heredity, 2013, 111, 157-164.	2.6	16
48	The unusual <i>S</i> locus of <i>Leavenworthia</i> is composed of two sets of paralogous loci. New Phytologist, 2017, 216, 1247-1255.	7.3	13
49	Bulk pollen sequencing reveals rapid evolution of segregation distortion in the male germline of Arabidopsis hybrids. Evolution Letters, 2019, 3, 93-103.	3.3	13
50	Trait Transitions in Explicit Ecological and Genomic Contexts: Plant Mating Systems as Case Studies. Advances in Experimental Medicine and Biology, 2014, 781, 7-36.	1.6	12
51	Base-Pairing Requirements for Small RNA-Mediated Gene Silencing of Recessive Self-Incompatibility Alleles in <i>Arabidopsis halleri</i> . Genetics, 2020, 215, 653-664.	2.9	12
52	Asymmetrical diversification of the receptor-ligand interaction controlling self-incompatibility in Arabidopsis. ELife, 2019, 8, .	6.0	11
53	Breakdown of gametophytic selfâ€incompatibility in subdivided populations. Evolution; International Journal of Organic Evolution, 2020, 74, 270-282.	2.3	9
54	The Discovery of Natural <i>Miscanthus</i> Accessions Related to <i>Miscanthus</i> Å—	1.8	5

<i>giganteus</i>/i> Using Chloroplast DNA. Crop Science, 2014, 54, 1645-1655.

3

#	Article	IF	CITATIONS
55	When the genetic architecture matters: evolutionary and ecological implications of self versus nonself recognition in plant selfâ€incompatibility. New Phytologist, 2021, 231, 1304-1307.	7.3	5

⁵⁶ Genetic mapping of sex and self-incompatibility determinants in the androdioecious plant Phillyrea angustifolia., 0, 1, .