
Cornelis A M De Haan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4530813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preventing Influenza A Virus Infection by Mixed Inhibition of Neuraminidase and Hemagglutinin by Divalent Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 7312-7323.	6.4	1
2	Human-type sialic acid receptors contribute to avian influenza A virus binding and entry by hetero-multivalent interactions. Nature Communications, 2022, 13, .	12.8	27
3	Second sialic acidâ€binding site of influenza A virus neuraminidase: binding receptors for efficient release. FEBS Journal, 2021, 288, 5598-5612.	4.7	25
4	Elephant Endotheliotropic Herpesvirus Is Omnipresent in Elephants in European Zoos and an Asian Elephant Range Country. Viruses, 2021, 13, 283.	3.3	19
5	Intranasal powder live attenuated influenza vaccine is thermostable, immunogenic, and protective against homologous challenge in ferrets. Npj Vaccines, 2021, 6, 59.	6.0	9
6	Respiratory mucus as a virus-host range determinant. Trends in Microbiology, 2021, 29, 983-992.	7.7	25
7	Analysis of the Evolution of Pandemic Influenza A(H1N1) Virus Neuraminidase Reveals Entanglement of Different Phenotypic Characteristics. MBio, 2021, 12, .	4.1	11
8	Enterocytes, fibroblasts and myeloid cells synergize in anti-bacterial and anti-viral pathways with IL22 as the central cytokine. Communications Biology, 2021, 4, 631.	4.4	8
9	Display of the human mucinome with defined O-glycans by gene engineered cells. Nature Communications, 2021, 12, 4070.	12.8	67
10	The assessment of <i>Pseudomonas aeruginosa</i> lectin LecA binding characteristics of divalent galactosides using multiple techniques. Glycobiology, 2021, 31, 1490-1499.	2.5	7
11	Influenza Neuraminidase Characteristics and Potential as a Vaccine Target. Frontiers in Immunology, 2021, 12, 786617.	4.8	29
12	Influenza A Virus Hemagglutinin–Neuraminidase–Receptor Balance: Preserving Virus Motility. Trends in Microbiology, 2020, 28, 57-67.	7.7	109
13	First-in-human administration of a live-attenuated RSV vaccine lacking the G-protein assessing safety, tolerability, shedding and immunogenicity: a randomized controlled trial. Vaccine, 2020, 38, 6088-6095.	3.8	16
14	Bovine IgG Prevents Experimental Infection With RSV and Facilitates Human T Cell Responses to RSV. Frontiers in Immunology, 2020, 11, 1701.	4.8	13
15	β-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway. Cell, 2020, 183, 1520-1535.e14.	28.9	441
16	Serological Screening of Influenza A Virus Antibodies in Cats and Dogs Indicates Frequent Infection with Different Subtypes. Journal of Clinical Microbiology, 2020, 58, .	3.9	10
17	Mutation of the second sialic acid-binding site of influenza A virus neuraminidase drives compensatory mutations in hemagglutinin. PLoS Pathogens, 2020, 16, e1008816.	4.7	19
18	Mucosal delivery of a multistage subunit vaccine promotes development of lung-resident memory T cells and affords interleukin-17-dependent protection against pulmonary tuberculosis. Npj Vaccines, 2020, 5, 105.	6.0	45

#	Article	IF	CITATIONS
19	Nucleocapsid Protein Recruitment to Replication-Transcription Complexes Plays a Crucial Role in Coronaviral Life Cycle. Journal of Virology, 2020, 94, .	3.4	294
20	Antiviral Activity of Chicken Cathelicidin B1 Against Influenza A Virus. Frontiers in Microbiology, 2020, 11, 426.	3.5	16
21	Breast Milk Prefusion F Immunoglobulin G as a Correlate of Protection Against Respiratory Syncytial Virus Acute Respiratory Illness. Journal of Infectious Diseases, 2019, 219, 59-67.	4.0	42
22	Enhanced Inhibition of Influenza A Virus Adhesion by Di- and Trivalent Hemagglutinin Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 6398-6404.	6.4	23
23	The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance. PLoS Pathogens, 2019, 15, e1007860.	4.7	45
24	Development and Standardization of a High-Throughput Multiplex Immunoassay for the Simultaneous Quantification of Specific Antibodies to Five Respiratory Syncytial Virus Proteins. MSphere, 2019, 4, .	2.9	18
25	Role of enhanced receptor engagement in the evolution of a pandemic acute hemorrhagic conjunctivitis virus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 397-402.	7.1	43
26	Cross-Protective Immune Responses Induced by Sequential Influenza Virus Infection and by Sequential Vaccination With Inactivated Influenza Vaccines. Frontiers in Immunology, 2018, 9, 2312.	4.8	22
27	Passive inhalation of dry powder influenza vaccine formulations completely protects chickens against H5N1 lethal viral challenge. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 85-95.	4.3	18
28	Advax augments B and T cell responses upon influenza vaccination via the respiratory tract and enables complete protection of mice against lethal influenza virus challenge. Journal of Controlled Release, 2018, 288, 199-211.	9.9	43
29	Substrate Binding by the Second Sialic Acid-Binding Site of Influenza A Virus N1 Neuraminidase Contributes to Enzymatic Activity. Journal of Virology, 2018, 92, .	3.4	30
30	Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces. PLoS Pathogens, 2018, 14, e1007233.	4.7	101
31	Genetic versus antigenic differences among highly pathogenic H5N1 avian influenza A viruses: Consequences for vaccine strain selection. Virology, 2017, 503, 83-93.	2.4	31
32	Mutation of the Second Sialic Acid-Binding Site, Resulting in Reduced Neuraminidase Activity, Preceded the Emergence of H7N9 Influenza A Virus. Journal of Virology, 2017, 91, .	3.4	44
33	Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8508-E8517.	7.1	272
34	Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers. Scientific Reports, 2017, 7, 5740.	3.3	54
35	<i>In Vitro</i> Enhancement of Respiratory Syncytial Virus Infection by Maternal Antibodies Does Not Explain Disease Severity in Infants. Journal of Virology, 2017, 91, .	3.4	19
36	Glycosylation Characterization of an Influenza H5N7 Hemagglutinin Series with Engineered Glycosylation Patterns: Implications for Structure–Function Relationships. Journal of Proteome Research, 2017, 16, 398-412.	3.7	19

#	Article	IF	CITATIONS
37	Three mutations switch H7N9 influenza to human-type receptor specificity. PLoS Pathogens, 2017, 13, e1006390.	4.7	83
38	Characteristics of RSV-Specific Maternal Antibodies in Plasma of Hospitalized, Acute RSV Patients under Three Months of Age. PLoS ONE, 2017, 12, e0170877.	2.5	27
39	Highly Pathogenic Influenza A(H5Nx) Viruses with Altered H5 Receptor-Binding Specificity. Emerging Infectious Diseases, 2017, 23, 220-231.	4.3	59
40	Coronavirus Spike Protein and Tropism Changes. Advances in Virus Research, 2016, 96, 29-57.	2.1	358
41	Characterization of Epitope-Specific Anti-Respiratory Syncytial Virus (Anti-RSV) Antibody Responses after Natural Infection and after Vaccination with Formalin-Inactivated RSV. Journal of Virology, 2016, 90, 5965-5977.	3.4	46
42	An siRNA screen for ATG protein depletion reveals the extent of the unconventional functions of the autophagy proteome in virus replication. Journal of Cell Biology, 2016, 214, 619-635.	5.2	52
43	Identification of Residues That Affect Oligomerization and/or Enzymatic Activity of Influenza Virus H5N1 Neuraminidase Proteins. Journal of Virology, 2016, 90, 9457-9470.	3.4	31
44	RSV neutralization by palivizumab, but not by monoclonal antibodies targeting other epitopes, is augmented by Fc gamma receptors. Antiviral Research, 2016, 132, 1-5.	4.1	15
45	Physical characterization and in silico modeling of inulin polymer conformation during vaccine adjuvant particle formation. Carbohydrate Polymers, 2016, 143, 108-115.	10.2	33
46	Enterovirus D68 receptor requirements unveiled by haploid genetics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1399-1404.	7.1	86
47	Rapid Emergence of Highly Pathogenic Avian Influenza Subtypes from a Subtype H5N1 Hemagglutinin Variant. Emerging Infectious Diseases, 2015, 21, 842-846.	4.3	75
48	In silico structure-based design and synthesis of novel anti-RSV compounds. Antiviral Research, 2015, 122, 46-50.	4.1	16
49	A gold glyco-nanoparticle carrying a listeriolysin O peptide and formulated with Advaxâ,,¢ delta inulin adjuvant induces robust T-cell protection against listeria infection. Vaccine, 2015, 33, 1465-1473.	3.8	77
50	ATP1A1-Mediated Src Signaling Inhibits Coronavirus Entry into Host Cells. Journal of Virology, 2015, 89, 4434-4448.	3.4	101
51	Severe Acute Respiratory Syndrome-Associated Coronavirus Vaccines Formulated with Delta Inulin Adjuvants Provide Enhanced Protection while Ameliorating Lung Eosinophilic Immunopathology. Journal of Virology, 2015, 89, 2995-3007.	3.4	186
52	Advaxâ,,¢, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety. Vaccine, 2015, 33, 5920-5926.	3.8	95
53	Impaired Antibody-mediated Protection and Defective IgA B-Cell Memory in Experimental Infection of Adults with Respiratory Syncytial Virus. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1040-1049.	5.6	216
54	Inulin crystal initiation via a glucose-fructose cross-link of adjacent polymer chains: Atomic force microscopy and static molecular modelling. Carbohydrate Polymers, 2015, 117, 964-972.	10.2	23

#	Article	IF	CITATIONS
55	Enhanced pulmonary immunization with aerosolized inactivated influenza vaccine containing delta inulin adjuvant. European Journal of Pharmaceutical Sciences, 2015, 66, 118-122.	4.0	18
56	A Field-Proven Yeast Two-Hybrid Protocol Used to Identify Coronavirus–Host Protein–Protein Interactions. Methods in Molecular Biology, 2015, 1282, 213-229.	0.9	15
57	Studying the Dynamics of Coronavirus Replicative Structures. Methods in Molecular Biology, 2015, 1282, 261-269.	0.9	3
58	Host Tissue and Glycan Binding Specificities of Avian Viral Attachment Proteins Using Novel Avian Tissue Microarrays. PLoS ONE, 2015, 10, e0128893.	2.5	11
59	Recombinant Soluble Respiratory Syncytial Virus F Protein That Lacks Heptad Repeat B, Contains a GCN4 Trimerization Motif and Is Not Cleaved Displays Prefusion-Like Characteristics. PLoS ONE, 2015, 10, e0130829.	2.5	15
60	Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner. PLoS Pathogens, 2014, 10, e1004502.	4.7	338
61	Identification and Characterization of a Proteolytically Primed Form of the Murine Coronavirus Spike Proteins after Fusion with the Target Cell. Journal of Virology, 2014, 88, 4943-4952.	3.4	27
62	Safety and immunogenicity of a delta inulin-adjuvanted inactivated Japanese encephalitis virus vaccine in pregnant mares and foals. Veterinary Research, 2014, 45, 130.	3.0	32
63	Hemagglutinin Receptor Specificity and Structural Analyses of Respiratory Droplet-Transmissible H5N1 Viruses. Journal of Virology, 2014, 88, 768-773.	3.4	61
64	Immunogenicity and safety of Advaxâ,,¢, a novel polysaccharide adjuvant based on delta inulin, when formulated with hepatitis B surface antigen: A randomized controlled Phase 1 study. Vaccine, 2014, 32, 6469-6477.	3.8	81
65	Evaluation of nonspreading Rift Valley fever virus as a vaccine vector using influenza virus hemagglutinin as a model antigen. Vaccine, 2014, 32, 5323-5329.	3.8	15
66	Oseltamivir Analogues Bearing N-Substituted Guanidines as Potent Neuraminidase Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 3154-3160.	6.4	38
67	Inulin isoforms differ by repeated additions of one crystal unit cell. Carbohydrate Polymers, 2014, 103, 392-397.	10.2	19
68	Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4. Virology, 2014, 458-459, 125-135.	2.4	128
69	Dissecting Virus Entry: Replication-Independent Analysis of Virus Binding, Internalization, and Penetration Using Minimal Complementation of β-Galactosidase. PLoS ONE, 2014, 9, e101762.	2.5	14
70	Evolution of the Hemagglutinin Protein of the New Pandemic H1N1 Influenza Virus: Maintaining Optimal Receptor Binding by Compensatory Substitutions. Journal of Virology, 2013, 87, 13868-13877.	3.4	37
71	A novel hepatitis B vaccine containing Advaxâ"¢, a polysaccharide adjuvant derived from delta inulin, induces robust humoral and cellular immunity with minimal reactogenicity in preclinical testing. Vaccine, 2013, 31, 1999-2007.	3.8	125
72	An autophagy-independent role for LC3 in equine arteritis virus replication. Autophagy, 2013, 9, 164-174.	9.1	54

#	Article	IF	CITATIONS
73	Substitutions T200A and E227A in the Hemagglutinin of Pandemic 2009 Influenza A Virus Increase Lethality but Decrease Transmission. Journal of Virology, 2013, 87, 6507-6511.	3.4	7
74	A Protective and Safe Intranasal RSV Vaccine Based on a Recombinant Prefusion-Like Form of the F Protein Bound to Bacterium-Like Particles. PLoS ONE, 2013, 8, e71072.	2.5	75
75	CD200 Receptor Controls Sex-Specific TLR7 Responses to Viral Infection. PLoS Pathogens, 2012, 8, e1002710.	4.7	81
76	Biogenesis and Dynamics of the Coronavirus Replicative Structures. Viruses, 2012, 4, 3245-3269.	3.3	64
77	Visualizing Coronavirus RNA Synthesis in Time by Using Click Chemistry. Journal of Virology, 2012, 86, 5808-5816.	3.4	77
78	Singleâ€cell analysis of population context advances RNAi screening at multiple levels. Molecular Systems Biology, 2012, 8, 579.	7.2	153
79	Randomized clinical trial of immunogenicity and safety of a recombinant H1N1/2009 pandemic influenza vaccine containing Advaxâ,,¢ polysaccharide adjuvant. Vaccine, 2012, 30, 5407-5416.	3.8	98
80	Advaxâ,,¢, a polysaccharide adjuvant derived from delta inulin, provides improved influenza vaccine protection through broad-based enhancement of adaptive immune responses. Vaccine, 2012, 30, 5373-5381.	3.8	144
81	Coxsackievirus mutants that can bypass host factor PI4KIIIÎ ² and the need for high levels of PI4P lipids for replication. Cell Research, 2012, 22, 1576-1592.	12.0	110
82	Glycan-Dependent Immunogenicity of Recombinant Soluble Trimeric Hemagglutinin. Journal of Virology, 2012, 86, 11735-11744.	3.4	60
83	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
84	Competition between Influenza A Virus Genome Segments. PLoS ONE, 2012, 7, e47529.	2.5	24
85	Influenza A virus entry into cells lacking sialylated N-glycans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7457-7462.	7.1	64
86	Protective Efficacy of Newcastle Disease Virus Expressing Soluble Trimeric Hemagglutinin against Highly Pathogenic H5N1 Influenza in Chickens and Mice. PLoS ONE, 2012, 7, e44447.	2.5	22
87	Delta inulin polysaccharide adjuvant enhances the ability of split-virion H5N1 vaccine to protect against lethal challenge in ferrets. Vaccine, 2011, 29, 6242-6251.	3.8	58
88	Unconventional Use of LC3 by Coronaviruses through the Alleged Subversion of the ERAD Tuning Pathway. Viruses, 2011, 3, 1610-1623.	3.3	21
89	Identification of host factors involved in coronavirus replication by quantitative proteomics analysis. Proteomics, 2011, 11, 64-80.	2.2	35
90	Quantitative proteomic identification of host factors involved in the <i>Salmonella typhimurium</i> infection cycle. Proteomics, 2011, 11, 4477-4491.	2.2	20

#	Article	IF	CITATIONS
91	Only Two Residues Are Responsible for the Dramatic Difference in Receptor Binding between Swine and New Pandemic H1 Hemagglutinin. Journal of Biological Chemistry, 2011, 286, 5868-5875.	3.4	60
92	Mobility and Interactions of Coronavirus Nonstructural Protein 4. Journal of Virology, 2011, 85, 4572-4577.	3.4	49
93	Delta inulin: a novel, immunologically active, stable packing structure comprising Â-D-[2 -> 1] poly(fructo-furanosyl) Â-D-glucose polymers. Clycobiology, 2011, 21, 595-606.	2.5	110
94	Dissection of the Influenza A Virus Endocytic Routes Reveals Macropinocytosis as an Alternative Entry Pathway. PLoS Pathogens, 2011, 7, e1001329.	4.7	267
95	The influenza A virus hemagglutinin glycosylation state affects receptor-binding specificity. Virology, 2010, 403, 17-25.	2.4	108
96	Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus. Cellular Microbiology, 2010, 12, 844-861.	2.1	185
97	A Single Immunization with Soluble Recombinant Trimeric Hemagglutinin Protects Chickens against Highly Pathogenic Avian Influenza Virus H5N1. PLoS ONE, 2010, 5, e10645.	2.5	66
98	Dynamics of Coronavirus Replication-Transcription Complexes. Journal of Virology, 2010, 84, 2134-2149.	3.4	85
99	The Coronavirus Nucleocapsid Protein Is Dynamically Associated with the Replication-Transcription Complexes. Journal of Virology, 2010, 84, 11575-11579.	3.4	99
100	Recombinant Soluble, Multimeric HA and NA Exhibit Distinctive Types of Protection against Pandemic Swine-Origin 2009 A(H1N1) Influenza Virus Infection in Ferrets. Journal of Virology, 2010, 84, 10366-10374.	3.4	96
101	Inhibition of the Ubiquitin-Proteasome System Affects Influenza A Virus Infection at a Postfusion Step. Journal of Virology, 2010, 84, 9625-9631.	3.4	82
102	The Proteasome Inhibitor Velcade Enhances rather than Reduces Disease in Mouse Hepatitis Coronavirus-Infected Mice. Journal of Virology, 2010, 84, 7880-7885.	3.4	27
103	The Ubiquitin-Proteasome System Plays an Important Role during Various Stages of the Coronavirus Infection Cycle. Journal of Virology, 2010, 84, 7869-7879.	3.4	101
104	Autophagy-independent LC3 function in vesicular traffic. Autophagy, 2010, 6, 994-996.	9.1	25
105	Coronaviruses Hijack the LC3-I-Positive EDEMosomes, ER-Derived Vesicles Exporting Short-Lived ERAD Regulators, for Replication. Cell Host and Microbe, 2010, 7, 500-508.	11.0	332
106	Type I interferon receptor-independent and -dependent host transcriptional responses to mouse hepatitis coronavirus infection in vivo. BMC Genomics, 2009, 10, 350.	2.8	15
107	Non-invasive imaging of mouse hepatitis coronavirus infection reveals determinants of viral replication and spread <i>in vivo</i> . Cellular Microbiology, 2009, 11, 825-841.	2.1	19
108	Improved microarray gene expression profiling of virus-infected cells after removal of viral RNA. BMC Genomics, 2008, 9, 221.	2.8	5

#	Article	IF	CITATIONS
109	Topology and Membrane Anchoring of the Coronavirus Replication Complex: Not All Hydrophobic Domains of nsp3 and nsp6 Are Membrane Spanning. Journal of Virology, 2008, 82, 12392-12405.	3.4	138
110	Are nidoviruses hijacking the autophagy machinery?. Autophagy, 2008, 4, 276-279.	9.1	41
111	Coronavirus Escape from Heptad Repeat 2 (HR2)-Derived Peptide Entry Inhibition as a Result of Mutations in the HR1 Domain of the Spike Fusion Protein. Journal of Virology, 2008, 82, 2580-2585.	3.4	25
112	Mouse Hepatitis Coronavirus RNA Replication Depends on GBF1-Mediated ARF1 Activation. PLoS Pathogens, 2008, 4, e1000088.	4.7	132
113	Manipulation of the Coronavirus Genome Using Targeted RNA Recombination with Interspecies Chimeric Coronaviruses. Methods in Molecular Biology, 2008, 454, 229-236.	0.9	11
114	Role of Endocytosis and Low pH in Murine Hepatitis Virus Strain A59 Cell Entry. Journal of Virology, 2007, 81, 10758-10768.	3.4	45
115	Cyclooxygenase activity is important for efficient replication of mouse hepatitis virus at an early stage of infection. Virology Journal, 2007, 4, 55.	3.4	38
116	The 29-Nucleotide Deletion Present in Human but Not in Animal Severe Acute Respiratory Syndrome Coronaviruses Disrupts the Functional Expression of Open Reading Frame 8. Journal of Virology, 2007, 81, 13876-13888.	3.4	101
117	Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and processing bodies. Cellular Microbiology, 2007, 9, 2218-2229.	2.1	114
118	Hosting the severe acute respiratory syndrome coronavirus: specific cell factors required for infection. Cellular Microbiology, 2006, 8, 1211-1218.	2.1	19
119	Vaccinia Virus-Induced Microtubule-Dependent Cellular Rearrangements. Traffic, 2006, 7, 308-323.	2.7	49
120	Vaccinia-Virus-Induced Cellular Contractility Facilitates the Subcellular Localization of the Viral Replication Sites. Traffic, 2006, 7, 1352-1367.	2.7	34
121	Cooperative Involvement of the S1 and S2 Subunits of the Murine Coronavirus Spike Protein in Receptor Binding and Extended Host Range. Journal of Virology, 2006, 80, 10909-10918.	3.4	49
122	Spike protein assembly into the coronavirion: exploring the limits of its sequence requirements. Virology, 2005, 334, 306-318.	2.4	52
123	Coronaviruses as Vectors: Stability of Foreign Gene Expression. Journal of Virology, 2005, 79, 12742-12751.	3.4	36
124	Molecular Interactions in the Assembly of Coronaviruses. Advances in Virus Research, 2005, 64, 165-230.	2.1	317
125	Murine Coronavirus with an Extended Host Range Uses Heparan Sulfate as an Entry Receptor. Journal of Virology, 2005, 79, 14451-14456.	3.4	115
126	Cleavage Inhibition of the Murine Coronavirus Spike Protein by a Furin-Like Enzyme Affects Cell-Cell but Not Virus-Cell Fusion. Journal of Virology, 2004, 78, 6048-6054.	3.4	128

#	Article	IF	CITATIONS
127	Coronavirus Spike Glycoprotein, Extended at the Carboxy Terminus with Green Fluorescent Protein, Is Assembly Competent. Journal of Virology, 2004, 78, 7369-7378.	3.4	22
128	The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain. Virology, 2003, 312, 395-406.	2.4	70
129	The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. Journal of Virology, 2003, 77, 8801-8811.	3.4	1,243
130	Coronaviruses as Vectors: Position Dependence of Foreign Gene Expression. Journal of Virology, 2003, 77, 11312-11323.	3.4	64
131	Coronaviruses Maintain Viability despite Dramatic Rearrangements of the Strictly Conserved Genome Organization. Journal of Virology, 2002, 76, 12491-12502.	3.4	56
132	The Group-Specific Murine Coronavirus Genes Are Not Essential, but Their Deletion, by Reverse Genetics, Is Attenuating in the Natural Host. Virology, 2002, 296, 177-189.	2.4	212
133	Assembly of Spikes into Coronavirus Particles Is Mediated by the Carboxy-Terminal Domain of the Spike Protein. Journal of Virology, 2000, 74, 1566-1571.	3.4	89
134	Assembly of the Coronavirus Envelope: Homotypic Interactions between the M Proteins. Journal of Virology, 2000, 74, 4967-4978.	3.4	165
135	Mapping of the Coronavirus Membrane Protein Domains Involved in Interaction with the Spike Protein. Journal of Virology, 1999, 73, 7441-7452.	3.4	113
136	Varying Viral Replication and Disease Profiles of H2N2 Influenza in Ferrets Is Associated with Virus Isolate and Inoculation Route. Journal of Virology, 0, , .	3.4	0