David E Clapham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4530793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recording Electrical Currents across the Plasma Membrane of Mammalian Sperm Cells. Journal of Visualized Experiments, 2021, , .	0.3	4
2	Odontoblast TRPC5 channels signal cold pain in teeth. Science Advances, 2021, 7, .	10.3	42
3	Sperm CatSper ion channel swims into sharper focus. Nature, 2021, 595, 654-655.	27.8	1
4	Employing NaChBac for cryo-EM analysis of toxin action on voltage-gated Na ⁺ channels in nanodisc. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14187-14193.	7.1	33
5	Isomeric Tuning Yields Bright and Targetable Red Ca ²⁺ Indicators. Journal of the American Chemical Society, 2019, 141, 13734-13738.	13.7	52
6	Cryo-EM structure of TRPC5 at 2.8-Ã resolution reveals unique and conserved structural elements essential for channel function. Science Advances, 2019, 5, eaaw7935.	10.3	69
7	Primary cilia and other mysteries. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 3-SL10.	0.0	0
8	Structure of full-length human TRPM4. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2377-2382.	7.1	77
9	Influences: Short circuits. Journal of General Physiology, 2018, 150, 513-515.	1.9	1
10	Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. ELife, 2018, 7, .	6.0	125
11	Structure of the mouse TRPC4 ion channel. Nature Communications, 2018, 9, 3102.	12.8	101
12	Cryo-EM structure of the polycystin 2-l1 ion channel. ELife, 2018, 7, .	6.0	43
13	Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8201-E8210.	7.1	101
14	Leucine-rich repeat containing 8A (LRRC8A) –dependent volume-regulated anion channel activity is dispensable for T-cell development and function. Journal of Allergy and Clinical Immunology, 2017, 140, 1651-1659.e1.	2.9	36
15	Progress in ciliary ion channel physiology. Journal of General Physiology, 2017, 149, 37-47.	1.9	36
16	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview. British Journal of Pharmacology, 2017, 174, S1-S16.	5.4	269
17	Histone phosphorylation by TRPM6's cleaved kinase attenuates adjacent arginine methylation to regulate gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7092-E7100.	7.1	35
18	TRPM7 senses oxidative stress to release Zn ²⁺ from unique intracellular vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6079-E6088.	7.1	89

#	Article	IF	CITATIONS
19	CatSperζ regulates the structural continuity of sperm Ca2+ signaling domains and is required for normal fertility. ELife, 2017, 6, .	6.0	131
20	Molecular basis of ion permeability in a voltageâ€gated sodium channel. EMBO Journal, 2016, 35, 820-830.	7.8	95
21	The Structure of the Polycystic Kidney Disease Channel PKD2 in Lipid Nanodiscs. Cell, 2016, 167, 763-773.e11.	28.9	214
22	Primary cilia are not calcium-responsive mechanosensors. Nature, 2016, 531, 656-660.	27.8	300
23	Naturally Produced Defensive Alkenal Compounds Activate TRPA1. Chemical Senses, 2016, 41, 281-292.	2.0	11
24	Mitochondrial calcium uniporter regulator 1 (MCUR1) regulates the calcium threshold for the mitochondrial permeability transition. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1872-80.	7.1	83
25	The Fungal Sexual Pheromone Sirenin Activates the Human CatSper Channel Complex. ACS Chemical Biology, 2016, 11, 452-459.	3.4	8
26	Atypical calcium regulation of the PKD2-L1 polycystin ion channel. ELife, 2016, 5, .	6.0	41
27	The Concise Guide to PHARMACOLOGY 2015/16: Overview. British Journal of Pharmacology, 2015, 172, 5729-5743.	5.4	220
28	Insights into the early evolution of animal calcium signaling machinery: A unicellular point of view. Cell Calcium, 2015, 57, 166-173.	2.4	54
29	Pain-sensing TRPA1 channel resolved. Nature, 2015, 520, 439-441.	27.8	18
30	Ion channels and calcium signaling in motile cilia. ELife, 2015, 4, .	6.0	37
31	Direct Recording and Molecular Identification of the Calcium Channel of Primary Cilia. Biophysical Journal, 2014, 106, 638a.	0.5	0
32	Structurally Distinct Ca2+ Signaling Domains of Sperm Flagella Orchestrate Tyrosine Phosphorylation and Motility. Cell, 2014, 157, 808-822.	28.9	210
33	Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1. Journal of General Physiology, 2014, 143, 67-73.	1.9	122
34	Early Evolution of the Eukaryotic Ca2+ Signaling Machinery: Conservation of the CatSper Channel Complex. Molecular Biology and Evolution, 2014, 31, 2735-2740.	8.9	44
35	Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8428-8433.	7.1	120
36	Therapeutic Restoration of Spinal Inhibition via Druggable Enhancement of Potassium-Chloride Cotransporter KCC2–Mediated Chloride Extrusion in Peripheral Neuropathic Pain. JAMA Neurology, 2014, 71, 640.	9.0	50

#	Article	IF	CITATIONS
37	Decreased Anxiety-Like Behavior and G _{αq/11} -Dependent Responses in the Amygdala of Mice Lacking TRPC4 Channels. Journal of Neuroscience, 2014, 34, 3653-3667.	3.6	84
38	Caspase-11 Controls Interleukin-1Î ² Release through Degradation of TRPC1. Cell Reports, 2014, 6, 1122-1128.	6.4	86
39	Outstanding questions regarding the permeation, selectivity, and regulation of the mitochondrial calcium uniporter. Biochemical and Biophysical Research Communications, 2014, 449, 367-369.	2.1	8
40	The TRPM7 Chanzyme Is Cleaved to Release a Chromatin-Modifying Kinase. Cell, 2014, 157, 1061-1072.	28.9	147
41	Ionic selectivity and thermal adaptations within the voltage-gated sodium channel family of alkaliphilic Bacillus. ELife, 2014, 3, .	6.0	34
42	TRPV3 Channels Mediate Strontium-Induced Mouse-Egg Activation. Cell Reports, 2013, 5, 1375-1386.	6.4	61
43	Primary cilia are specialized calcium signalling organelles. Nature, 2013, 504, 311-314.	27.8	429
44	Direct recording and molecular identification of the calcium channel of primary cilia. Nature, 2013, 504, 315-318.	27.8	268
45	EMRE Is an Essential Component of the Mitochondrial Calcium Uniporter Complex. Science, 2013, 342, 1379-1382.	12.6	537
46	Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6364-6369.	7.1	149
47	Analysis of the selectivity filter of the voltage-gated sodium channel NavRh. Cell Research, 2013, 23, 409-422.	12.0	46
48	mTOR Regulates Lysosomal ATP-Sensitive Two-Pore Na+ Channels to Adapt to Metabolic State. Cell, 2013, 152, 778-790.	28.9	313
49	Rheotaxis Guides Mammalian Sperm. Current Biology, 2013, 23, 443-452.	3.9	338
50	Sperm Patch-Clamp. Methods in Enzymology, 2013, 525, 59-83.	1.0	30
51	Timing of Myocardial <i>Trpm7</i> Deletion During Cardiogenesis Variably Disrupts Adult Ventricular Function, Conduction, and Repolarization. Circulation, 2013, 128, 101-114.	1.6	94
52	The G-protein–gated K+ channel, <i>IKACh</i> , is required for regulation of pacemaker activity and recovery of resting heart rate after sympathetic stimulation. Journal of General Physiology, 2013, 142, 113-126.	1.9	69
53	Simultaneous knockout of <i>Slo3</i> and <i>CatSper1</i> abolishes all alkalization- and voltage-activated current in mouse spermatozoa. Journal of General Physiology, 2013, 142, 305-313.	1.9	65
54	Ion channel-kinase TRPM <i>7</i> is required for maintaining cardiac automaticity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3037-46.	7.1	99

#	Article	IF	CITATIONS
55	Letm1, the mitochondrial Ca ²⁺ /H ⁺ antiporter, is essential for normal glucose metabolism and alters brain function in Wolf–Hirschhorn syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2249-54.	7.1	110
56	Role of the C-terminal domain in the structure and function of tetrameric sodium channels. Nature Communications, 2013, 4, 2465.	12.8	71
57	MCU encodes the pore conducting mitochondrial calcium currents. ELife, 2013, 2, e00704.	6.0	156
58	Sperm BerserKers. ELife, 2013, 2, e01469.	6.0	7
59	The mother of all endocytosis. ELife, 2013, 2, e01738.	6.0	3
60	Ancestral Ca2+ Signaling Machinery in Early Animal and Fungal Evolution. Molecular Biology and Evolution, 2012, 29, 91-100.	8.9	89
61	The voltage-gated proton channel Hv1 enhances brain damage from ischemic stroke. Nature Neuroscience, 2012, 15, 565-573.	14.8	207
62	TRPV4 Is a Regulator of Adipose Oxidative Metabolism, Inflammation, and Energy Homeostasis. Cell, 2012, 151, 96-110.	28.9	292
63	TPC Proteins Are Phosphoinositide- Activated Sodium-Selective Ion Channels in Endosomes and Lysosomes. Cell, 2012, 151, 372-383.	28.9	456
64	The Control of Male Fertility by Spermatozoan Ion Channels. Annual Review of Physiology, 2012, 74, 453-475.	13.1	291
65	Cleavage of TRPM7 Releases the Kinase Domain from the Ion Channel and Regulates Its Participation in Fas-Induced Apoptosis. Developmental Cell, 2012, 22, 1149-1162.	7.0	132
66	Controlled delivery of bioactive molecules into live cells using the bacterial mechanosensitive channel MscL. Nature Communications, 2012, 3, 990.	12.8	54
67	The channel kinase, <i>TRPM7</i> , is required for early embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E225-33.	7.1	153
68	Anion-Sensitive Fluorophore Identifies the Drosophila Swell-Activated Chloride Channel in a Genome-Wide RNA Interference Screen. PLoS ONE, 2012, 7, e46865.	2.5	27
69	Calpain cleaves and activates the TRPC5 channel to participate in semaphorin 3A-induced neuronal growth cone collapse. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7888-7892.	7.1	55
70	Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature, 2012, 486, 130-134.	27.8	439
71	A novel gene required for male fertility and functional CATSPER channel formation in spermatozoa. Nature Communications, 2011, 2, 153.	12.8	169
72	POST, partner of stromal interaction molecule 1 (STIM1), targets STIM1 to multiple transporters. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19234-19239	7.1	96

#	Article	IF	CITATIONS
73	Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18114-18119.	7.1	192
74	TRPM7, the Mg2+ Inhibited Channel and Kinase. Advances in Experimental Medicine and Biology, 2011, 704, 173-183.	1.6	72
75	A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19492-19497.	7.1	211
76	Melanopsin signalling in mammalian iris and retina. Nature, 2011, 479, 67-73.	27.8	234
77	ATP-activated P2X2 current in mouse spermatozoa. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14342-14347.	7.1	53
78	Feeling the heat: Temperature sensing by ion channels – how do they do it?. Biochemist, 2011, 33, 22-25.	0.5	0
79	An aqueous H+ permeation pathway in the voltage-gated proton channel Hv1. Nature Structural and Molecular Biology, 2010, 17, 869-875.	8.2	160
80	International Union of Basic and Clinical Pharmacology. LXXVI. Current Progress in the Mammalian TRP Ion Channel Family. Pharmacological Reviews, 2010, 62, 381-404.	16.0	502
81	Targeted Cytosolic Delivery of Cell-Impermeable Compounds by Nanoparticle-Mediated, Light-Triggered Endosome Disruption. Nano Letters, 2010, 10, 2211-2219.	9.1	110
82	TRP Channel Regulates EGFR Signaling in Hair Morphogenesis and Skin Barrier Formation. Cell, 2010, 141, 331-343.	28.9	287
83	TRPM1 Forms Ion Channels Associated with Melanin Content in Melanocytes. Science Signaling, 2009, 2, ra21.	3.6	164
84	Mammalian <i>MagT1</i> and <i>TUSC3</i> are required for cellular magnesium uptake and vertebrate embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15750-15755.	7.1	175
85	Intracellular calcium strongly potentiates agonist-activated TRPC5 channels. Journal of General Physiology, 2009, 133, 525-546.	1.9	128
86	Hv1 proton channels are required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7642-7647.	7.1	234
87	Phenotyping sensory nerve endings in vitro in the mouse. Nature Protocols, 2009, 4, 174-196.	12.0	152
88	A STIMulus Package Puts Orai Calcium Channels to Work. Cell, 2009, 136, 814-816.	28.9	29
89	Essential Role for TRPC5 in Amygdala Function and Fear-Related Behavior. Cell, 2009, 137, 761-772.	28.9	245
90	Genome-Wide RNAi Screen Identifies Letm1 as a Mitochondrial Ca ²⁺ /H ⁺ Antiporter. Science, 2009, 326, 144-147.	12.6	470

#	Article	IF	CITATIONS
91	Detailed comparison of expressed and native voltageâ€gated proton channel currents. Journal of Physiology, 2008, 586, 2477-2486.	2.9	78
92	The MUPP1–SynGAPα protein complex does not mediate activity-induced LTP. Molecular and Cellular Neurosciences, 2008, 38, 183-188.	2.2	8
93	Deletion of <i>Trpm7</i> Disrupts Embryonic Development and Thymopoiesis Without Altering Mg ²⁺ Homeostasis. Science, 2008, 322, 756-760.	12.6	379
94	TRPM7 facilitates cholinergic vesicle fusion with the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8304-8308.	7.1	95
95	Ion channels that control fertility in mammalian spermatozoa. International Journal of Developmental Biology, 2008, 52, 607-613.	0.6	123
96	Citral Sensing by TRANSient Receptor Potential Channels in Dorsal Root Ganglion Neurons. PLoS ONE, 2008, 3, e2082.	2.5	101
97	Evolutionary Genomics Reveals Lineage-Specific Gene Loss and Rapid Evolution of a Sperm-Specific Ion Channel Complex: CatSpers and CatSperl ² . PLoS ONE, 2008, 3, e3569.	2.5	92
98	KSper, a pH-sensitive K+ current that controls sperm membrane potential. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7688-7692.	7.1	199
99	Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint–waddler mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18321-18326.	7.1	188
100	The voltage-gated Na+ channel NaVBP co-localizes with methyl-accepting chemotaxis protein at cell poles of alkaliphilic Bacillus pseudofirmus OF4. Microbiology (United Kingdom), 2007, 153, 4027-4038.	1.8	26
101	CatSperÎ ² , a Novel Transmembrane Protein in the CatSper Channel Complex. Journal of Biological Chemistry, 2007, 282, 18945-18952.	3.4	148
102	All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1219-1223.	7.1	455
103	SnapShot: Mammalian TRP Channels. Cell, 2007, 129, 220.e1-220.e2.	28.9	124
104	Calcium Signaling. Cell, 2007, 131, 1047-1058.	28.9	3,538
105	Bisandrographolide from Andrographis paniculata Activates TRPV4 Channels. Journal of Biological Chemistry, 2006, 281, 29897-29904.	3.4	130
106	Developmental Origin of a Bipotential Myocardial and Smooth Muscle Cell Precursor in the Mammalian Heart. Cell, 2006, 127, 1137-1150.	28.9	504
107	AN INTRODUCTION TO TRP CHANNELS. Annual Review of Physiology, 2006, 68, 619-647.	13.1	1,378
108	The TRPM7 Ion Channel Functions in Cholinergic Synaptic Vesicles and Affects Transmitter Release. Neuron, 2006, 52, 485-496.	8.1	186

#	Article	IF	CITATIONS
109	Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nature Neuroscience, 2006, 9, 628-635.	14.8	552
110	Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature, 2006, 439, 737-740.	27.8	403
111	A voltage-gated proton-selective channel lacking the pore domain. Nature, 2006, 440, 1213-1216.	27.8	546
112	Calbindin-D28K dynamically controls TRPV5-mediated Ca2+ transport. EMBO Journal, 2006, 25, 2978-2988.	7.8	125
113	Functional TRPM7 Channels Accumulate at the Plasma Membrane in Response to Fluid Flow. Circulation Research, 2006, 98, 245-253.	4.5	227
114	CACNA1H Mutations in Autism Spectrum Disorders. Journal of Biological Chemistry, 2006, 281, 22085-22091.	3.4	201
115	TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nature Genetics, 2005, 37, 739-744.	21.4	747
116	TRP channels and mice deficient in TRP channels. Pflugers Archiv European Journal of Physiology, 2005, 451, 11-18.	2.8	39
117	International Union of Pharmacology. L. Nomenclature and Structure-Function Relationships of CatSper and Two-Pore Channels. Pharmacological Reviews, 2005, 57, 451-454.	16.0	49
118	TATA-Binding Protein (TBP)-Like Factor (TLF) Is a Functional Regulator of Transcription: Reciprocal Regulation of the Neurofibromatosis Type 1 and c- fos Genes by TLF/TRF2 and TBP. Molecular and Cellular Biology, 2005, 25, 2632-2643.	2.3	42
119	International Union of Pharmacology. LIV. Nomenclature and Molecular Relationships of Inwardly Rectifying Potassium Channels. Pharmacological Reviews, 2005, 57, 509-526.	16.0	240
120	Camphor Activates and Strongly Desensitizes the Transient Receptor Potential Vanilloid Subtype 1 Channel in a Vanilloid-Independent Mechanism. Journal of Neuroscience, 2005, 25, 8924-8937.	3.6	340
121	International Union of Pharmacology. XLIX. Nomenclature and Structure-Function Relationships of Transient Receptor Potential Channels. Pharmacological Reviews, 2005, 57, 427-450.	16.0	365
122	A Spontaneous, Recurrent Mutation in Divalent Metal Transporter-1 Exposes a Calcium Entry Pathway. PLoS Biology, 2004, 2, e50.	5.6	60
123	The voltage-gated Na+ channel NaVBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10566-10571.	7.1	105
124	A Superfamily of Voltage-gated Sodium Channels in Bacteria*. Journal of Biological Chemistry, 2004, 279, 9532-9538.	3.4	147
125	Rapid vesicular translocation and insertion of TRP channels. Nature Cell Biology, 2004, 6, 709-720.	10.3	497
126	The mitochondrial calcium uniporter is a highly selective ion channel. Nature, 2004, 427, 360-364.	27.8	1,217

8

#	Article	IF	CITATIONS
127	TRP ion channels in the nervous system. Current Opinion in Neurobiology, 2004, 14, 362-369.	4.2	301
128	Phosphatidylinositol 3-Kinase Activates ERK in Primary Sensory Neurons and Mediates Inflammatory Heat Hyperalgesia through TRPV1 Sensitization. Journal of Neuroscience, 2004, 24, 8300-8309.	3.6	368
129	SynGAP-MUPP1-CaMKII Synaptic Complexes Regulate p38 MAP Kinase Activity and NMDA Receptor- Dependent Synaptic AMPA Receptor Potentiation. Neuron, 2004, 43, 563-574.	8.1	254
130	Near-membrane protein dynamics revealed by evanescent field microscopy. , 2004, 5467, 326.		0
131	Intracellular Signaling and Regulation of Cardiac Ion Channels. , 2004, , 33-41.		7
132	TRP channels as cellular sensors. Nature, 2003, 426, 517-524.	27.8	2,380
133	TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nature Neuroscience, 2003, 6, 837-845.	14.8	344
134	Symmetry, Selectivity, and the 2003 Nobel Prize. Cell, 2003, 115, 641-646.	28.9	8
135	Real-Time Imaging of Nuclear Permeation by EGFP in Single Intact Cells. Biophysical Journal, 2003, 84, 1317-1327.	0.5	91
136	The NMDA Receptor Is Coupled to the ERK Pathway by a Direct Interaction between NR2B and RasGRF1. Neuron, 2003, 40, 775-784.	8.1	394
137	Mechanism of Persistent Protein Kinase D1 Translocation and Activation. Developmental Cell, 2003, 4, 561-574.	7.0	50
138	International Union of Pharmacology. XLIII. Compendium of Voltage-Gated Ion Channels: Transient Receptor Potential Channels. Pharmacological Reviews, 2003, 55, 591-596.	16.0	227
139	CatSper1 required for evoked Ca2+ entry and control of flagellar function in sperm. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14864-14868.	7.1	357
140	International Union of Pharmacology. XLI. Compendium of Voltage-Gated Ion Channels: Potassium Channels. Pharmacological Reviews, 2003, 55, 583-586.	16.0	358
141	International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels. Pharmacological Reviews, 2003, 55, 573-574.	16.0	742
142	Formation of Novel TRPC Channels by Complex Subunit Interactions in Embryonic Brain. Journal of Biological Chemistry, 2003, 278, 39014-39019.	3.4	370
143	Sorting out MIC, TRP, and CRAC Ion Channels. Journal of General Physiology, 2002, 120, 217-220.	1.9	58
144	SIGNAL TRANSDUCTION: Hot and Cold TRP Ion Channels. Science, 2002, 295, 2228-2229.	12.6	42

#	Article	IF	CITATIONS
145	The Cation Selectivity Filter of the Bacterial Sodium Channel, NaChBac. Journal of General Physiology, 2002, 120, 845-853.	1.9	141
146	A Unified Nomenclature for the Superfamily of TRP Cation Channels. Molecular Cell, 2002, 9, 229-231.	9.7	620
147	Structural characterization of the mouse Girk genes. Gene, 2002, 284, 241-250.	2.2	26
148	Modified herpes simplex virus delivery of enhanced GFP into the central nervous system. Journal of Neuroscience Methods, 2002, 121, 211-219.	2.5	26
149	TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature, 2002, 418, 181-186.	27.8	795
150	The TRPM7 channel is inactivated by PIP2 hydrolysis. Nature Cell Biology, 2002, 4, 329-336.	10.3	483
151	Evaluation of the role of IKAChin atrial fibrillation using a mouse knockout model. Journal of the American College of Cardiology, 2001, 37, 2136-2143.	2.8	234
152	A Prokaryotic Voltage-Gated Sodium Channel. Science, 2001, 294, 2372-2375.	12.6	461
153	In Memorium. Journal of Molecular and Cellular Cardiology, 2001, 33, 1393-1394.	1.9	0
154	How to Lose Your Hippocampus by Working on Chloride Channels. Neuron, 2001, 29, 1-3.	8.1	24
155	TRPC1 and TRPC5 Form a Novel Cation Channel in Mammalian Brain. Neuron, 2001, 29, 645-655.	8.1	692
156	TRP-PLIK, a Bifunctional Protein with Kinase and Ion Channel Activities. Science, 2001, 291, 1043-1047.	12.6	680
157	Excitability and Conduction. , 2001, , 311-335.		1
158	CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature, 2001, 410, 705-709.	27.8	336
159	The trp ion channel family. Nature Reviews Neuroscience, 2001, 2, 387-396.	10.2	1,020
160	A sperm ion channel required for sperm motility and male fertility. Nature, 2001, 413, 603-609.	27.8	833
161	A voltage-gated ion channel expressed specifically in spermatozoa. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12527-12531.	7.1	291
162	Fundamental Ca2+ Signaling Mechanisms in Mouse Dendritic Cells: CRAC Is the Major Ca2+ Entry Pathway. Journal of Immunology, 2001, 166, 6126-6133.	0.8	82

#	Article	IF	CITATIONS
163	The Stoichiometry of Gβγ Binding to G-protein-regulated Inwardly Rectifying K+ Channels (GIRKs). Journal of Biological Chemistry, 2001, 276, 11409-11413.	3.4	41
164	Brain Localization and Behavioral Impact of the G-Protein-Gated K+Channel Subunit GIRK4. Journal of Neuroscience, 2000, 20, 5608-5615.	3.6	112
165	Functional and Biochemical Evidence for G-protein-gated Inwardly Rectifying K+ (GIRK) Channels Composed of GIRK2 and GIRK3. Journal of Biological Chemistry, 2000, 275, 36211-36216.	3.4	96
166	ICln Is Essential for Cellular and Early Embryonic Viability. Journal of Biological Chemistry, 2000, 275, 12363-12366.	3.4	32
167	A Switch Mechanism for $\hat{Gl^{2}}$ Activation of IKACh. Journal of Biological Chemistry, 2000, 275, 29709-29716.	3.4	55
168	Distinct Ion Channel Classes Are Expressed on the Outer Nuclear Envelope of T- and B-Lymphocyte Cell Lines. Biophysical Journal, 2000, 79, 202-214.	0.5	36
169	Active Nuclear Import and Export Is Independent of Lumenal Ca2+ Stores in Intact Mammalian Cells. Journal of General Physiology, 1999, 113, 239-248.	1.9	50
170	GIRK4 Confers Appropriate Processing and Cell Surface Localization to G-protein-gated Potassium Channels. Journal of Biological Chemistry, 1999, 274, 2571-2582.	3.4	76
171	More pieces of the K+ ion channel puzzle. , 1999, 6, 807-810.		4
172	Structure, G Protein Activation, and Functional Relevance of the Cardiac G Protein-Gated K+ Channel, IKACh. Annals of the New York Academy of Sciences, 1999, 868, 386-398.	3.8	35
173	Functional Expression and Characterization of G-protein-gated Inwardly Rectifying K + Channels Containing GIRK3. Journal of Membrane Biology, 1999, 169, 123-129.	2.1	49
174	Molecular Determinants for Subcellular Localization of PSD-95 with an Interacting K+ Channel. Neuron, 1999, 23, 149-157.	8.1	119
175	Unlocking Family Secrets. Cell, 1999, 97, 547-550.	28.9	13
176	Conformational Changes of the in Situ Nuclear Pore Complex. Biophysical Journal, 1999, 77, 241-247.	0.5	90
177	Gβγ Binding Increases the Open Time of IKACh: Kinetic Evidence for Multiple Gβγ Binding Sites. Biophysical Journal, 1999, 76, 246-252.	0.5	38
178	Chapter 16 G-Protein-Gated Potassium Channels: Implication for the weaver Mouse. Current Topics in Membranes, 1999, 46, 295-320.	0.9	1
179	pICln Inhibits snRNP Biogenesis by Binding Core Spliceosomal Proteins. Molecular and Cellular Biology, 1999, 19, 4113-4120.	2.3	92
180	At last, the structure of an ion-selective channel. Nature Structural Biology, 1998, 5, 342-344.	9.7	8

#	Article	IF	CITATIONS
181	NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation. Nature Neuroscience, 1998, 1, 114-118.	14.8	208
182	Calcium regulation of nuclear pore permeability. Cell Calcium, 1998, 23, 91-101.	2.4	58
183	Abnormal Heart Rate Regulation in GIRK4 Knockout Mice. Neuron, 1998, 20, 103-114.	8.1	355
184	A Novel Inward Rectifier K+ Channel with Unique Pore Properties. Neuron, 1998, 20, 995-1005.	8.1	170
185	Not So Funny Anymore. Neuron, 1998, 21, 5-7.	8.1	114
186	Touch Channels Sense Blood Pressure. Neuron, 1998, 21, 1224-1226.	8.1	1
187	Perspective: The List of Potential Volume-sensitive Chloride Currents Continues to Swell (and Shrink). Journal of General Physiology, 1998, 111, 623-624.	1.9	58
188	Number and Stoichiometry of Subunits in the Native Atrial G-protein-gated K+ Channel, IKACh. Journal of Biological Chemistry, 1998, 273, 5271-5278.	3.4	107
189	pICIn Binds to a Mammalian Homolog of a Yeast Protein Involved in Regulation of Cell Morphology. Journal of Biological Chemistry, 1998, 273, 10811-10814.	3.4	57
190	Identification of Native Atrial G-protein-regulated Inwardly Rectifying K+ (GIRK4) Channel Homomultimers. Journal of Biological Chemistry, 1998, 273, 27499-27504.	3.4	89
191	Gβγ Binding to GIRK4 Subunit Is Critical for G Protein-gated K+ Channel Activation. Journal of Biological Chemistry, 1998, 273, 16946-16952.	3.4	79
192	Evidence for Direct Physical Association between a K ⁺ Channel (Kir6.2) and an ATP-Binding Cassette Protein (SUR1) Which Affects Cellular Distribution and Kinetic Behavior of an ATP-Sensitive K ⁺ Channel. Molecular and Cellular Biology, 1998, 18, 1652-1659.	2.3	79
193	G PROTEIN $\hat{I}^{2}\hat{I}^{3}$ SUBUNITS. Annual Review of Pharmacology and Toxicology, 1997, 37, 167-203.	9.4	791
194	Ion Channels — Basic Science and Clinical Disease. New England Journal of Medicine, 1997, 336, 1575-1586.	27.0	354
195	Partial Structure, Chromosome Localization, and Expression of the MouselcInGene. Genomics, 1997, 40, 402-408.	2.9	13
196	Partial Structure, Chromosome Localization, and Expression of the MouseGirk4Gene. Genomics, 1997, 40, 395-401.	2.9	23
197	Some like it hot: spicing up ion channels. Nature, 1997, 389, 783-784.	27.8	52
198	Calcium release and influx colocalize to the endoplasmic reticulum. Current Biology, 1997, 7, 599-602.	3.9	57

#	Article	IF	CITATIONS
199	Nucleoplasmic and cytoplasmic differences in the fluorescence properties of the calcium indicator Fluo-3. Cell Calcium, 1997, 21, 275-282.	2.4	97
200	Nuclear calcium and the regulation of the nuclear pore complex. BioEssays, 1997, 19, 787-792.	2.5	64
201	The K ⁺ channel inward rectifier subunits form a channel similar to neuronal G proteinâ€gated K ⁺ channel. FEBS Letters, 1996, 379, 31-37.	2.8	84
202	Cloning of a Xenopus laevis Inwardly Rectifying K+ Channel Subunit That Permits GIRK1 Expression of IKACh Currents in Oocytes. Neuron, 1996, 16, 423-429.	8.1	180
203	TRP Is Cracked but Is CRAC TRP?. Neuron, 1996, 16, 1069-1072.	8.1	80
204	Intracellular signalling: More jobs for Gβγ. Current Biology, 1996, 6, 814-816.	3.9	15
205	The G-protein nanomachine. Nature, 1996, 379, 297-299.	27.8	117
206	Replenishing the stores. Nature, 1995, 375, 634-635.	27.8	168
207	The G Protein βγ Subunit Transduces the Muscarinic Receptor Signal for Ca2+ Release in Xenopus Oocytes. Journal of Biological Chemistry, 1995, 270, 30068-30074.	3.4	76
208	The Cardiac Inward Rectifier K+ Channel Subunit, CIR, Does Not Comprise the ATP-sensitive K+ Channel, IKATP. Journal of Biological Chemistry, 1995, 270, 28777-28779.	3.4	51
209	Gβγ Binds Directly to the G Protein-gated K+ Channel, IKACh. Journal of Biological Chemistry, 1995, 270, 29059-29062.	3.4	214
210	Calcium release from the nucleus by InsP3 receptor channels. Neuron, 1995, 14, 163-167.	8.1	194
211	G-protein regulation of ion channels. Current Opinion in Neurobiology, 1995, 5, 278-285.	4.2	81
212	Calcium signaling. Cell, 1995, 80, 259-268.	28.9	2,346
213	1 Intracellular calcium waves. Advances in Second Messenger and Phosphoprotein Research, 1995, 30, 1-24.	4.5	25
214	Simultaneous Ultraviolet and Visible Wavelength Confocal Microscopy. , 1994, , 95-100.		1
215	Recombinant G-protein Î ² Î ³ -subunits activate the muscarinic-gated atrial potassium channel. Nature, 1994, 368, 255-257.	27.8	452
216	Why testicles are cool. Nature, 1994, 371, 109-110.	27.8	7

David E Clapham

#ARTICLEIFCITAT217Molecular characterization of a swelling-induced chloride conductance regulatory protein, plCIn. Cell, 1994, 76, 439-448.28.9206218[27] G-protein-mediated pathways assayed by electrophysiology and confocal microscopy. Methods in Enzymology, 1994, 238, 321-335.1.00	
217Molecular characterization of a swelling-induced chloride conductance regulatory protein, plCIn. Cell, 1994, 76, 439-448.28.9206218[27] G-protein-mediated pathways assayed by electrophysiology and confocal microscopy. Methods in Enzymology, 1994, 238, 321-335.1.00	TIONS
 [27] G-protein-mediated pathways assayed by electrophysiology and confocal microscopy. Methods in 1.0 0 	
 Simultaneous Near Ultraviolet and Visible Excitation Confocal Microscopy of Calcium Transients in Xenopus Oocytes. Methods in Cell Biology, 1994, 40, 263-284. 	
220 A mysterious new influx factor?. Nature, 1993, 364, 763-764. 27.8 38	
221	

#	Article	IF	CITATIONS
235	Intracellular Regulation of Ion Channels in Cell Membranes. Mayo Clinic Proceedings, 1990, 65, 1127-1143.	3.0	15
236	Arachidonic acid and its metabolites in the regulation of G-protein gated K+ channels in atrial myocytes. Biochemical Pharmacology, 1990, 39, 813-815.	4.4	16
237	Structure and Function of G-Protein $\hat{I}^2\hat{I}^3$ Subunit. , 1990, , 41-61.		9
238	Somatostatin activates an inwardly rectifying K+ channel in neonatal rat atrial cells. Pflugers Archiv European Journal of Physiology, 1989, 414, 492-494.	2.8	33
239	G-protein βγ-subunits activate the cardiac muscarinic K+-channel via phospholipase A2. Nature, 1989, 337, 557-560.	27.8	438
240	Roles of G protein subunits in transmembrane signalling. Nature, 1988, 333, 129-134.	27.8	839
241	The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature, 1987, 325, 321-326.	27.8	1,173
242	G protein opening of K+ channels. Nature, 1987, 327, 22-22.	27.8	9
243	Voltage-Activated K Channels in Embryonic Chick Heart. Biophysical Journal, 1984, 45, 40-42.	0.5	36
244	Small signal impedance of heart cell membranes. Journal of Membrane Biology, 1982, 67, 63-71.	2.1	13
245	Intercellular Coupling between Embryonic Heart Cell Aggregates. Developments in Cardiovascular Medicine, 1982, , 265-281.	0.1	1
246	Development of electrical coupling and action potential synchrony between paired aggregates of embryonic heart cells. Journal of Membrane Biology, 1979, 51, 75-96.	2.1	59
247	The theoretical small signal impedance of the frog node,Rana pipiens. Pflugers Archiv European Journal of Physiology, 1976, 366, 273-276.	2.8	14
248	Visualizing synaptic dopamine efflux with a 2D composite nanofilm. ELife, 0, 11, .	6.0	15