Patrick J Pollard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4530598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Human Molecular Genetics, 2005, 14, 2231-2239.	2.9	769
2	Heterozygous Deficiency of PHD2 Restores Tumor Oxygenation and Inhibits Metastasis via Endothelial Normalization. Cell, 2009, 136, 839-851.	28.9	727
3	Genome-wide Association of Hypoxia-inducible Factor (HIF)-1α and HIF-2α DNA Binding with Expression Profiling of Hypoxia-inducible Transcripts. Journal of Biological Chemistry, 2009, 284, 16767-16775.	3.4	516
4	Renal Cyst Formation in Fh1-Deficient Mice Is Independent of the Hif/Phd Pathway: Roles for Fumarate in KEAP1 Succination and Nrf2 Signaling. Cancer Cell, 2011, 20, 524-537.	16.8	494
5	An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncology, The, 2009, 10, 764-771.	10.7	477
6	Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature, 2011, 477, 225-228.	27.8	433
7	Oncometabolites: linking altered metabolism with cancer. Journal of Clinical Investigation, 2013, 123, 3652-3658.	8.2	334
8	SDH mutations in cancer. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1432-1443.	1.0	327
9	Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Human Molecular Genetics, 2014, 23, 2440-2446.	2.9	316
10	Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1α. Biochemical Journal, 2008, 416, 387-394.	3.7	278
11	Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Human Molecular Genetics, 2003, 12, 1241-1252.	2.9	272
12	Fumarate Is Cardioprotective via Activation of the Nrf2 Antioxidant Pathway. Cell Metabolism, 2012, 15, 361-371.	16.2	231
13	Aberrant succination of proteins in fumarate hydrataseâ€deficient mice and HLRCC patients is a robust biomarker of mutation status. Journal of Pathology, 2011, 225, 4-11.	4.5	225
14	Bone Marrowâ€Derived Cells Contribute to Podocyte Regeneration and Amelioration of Renal Disease in a Mouse Model of Alport Syndrome. Stem Cells, 2006, 24, 2448-2455.	3.2	205
15	Targeted Inactivation of Fh1 Causes Proliferative Renal Cyst Development and Activation of the Hypoxia Pathway. Cancer Cell, 2007, 11, 311-319.	16.8	158
16	The emerging role of fumarate as an oncometabolite. Frontiers in Oncology, 2012, 2, 85.	2.8	140
17	Inhibition of Mitochondrial Aconitase by Succination in Fumarate Hydratase Deficiency. Cell Reports, 2013, 3, 689-700.	6.4	137
18	Inborn and acquired metabolic defects in cancer. Journal of Molecular Medicine, 2011, 89, 213-220.	3.9	132

PATRICK J POLLARD

#	Article	IF	CITATIONS
19	The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase. Annals of Medicine, 2003, 35, 634-635.	3.8	131
20	Expression of HIF-1α, HIF-2α (EPAS1), and Their Target Genes in Paraganglioma and Pheochromocytoma with VHL and SDH Mutations. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 4593-4598.	3.6	131
21	Expression of Idh1R132H in the Murine Subventricular Zone Stem Cell Niche Recapitulates Features of Early Gliomagenesis. Cancer Cell, 2016, 30, 578-594.	16.8	122
22	Human AlkB Homologue 5 Is a Nuclear 2-Oxoglutarate Dependent Oxygenase and a Direct Target of Hypoxia-Inducible Factor 1α (HIF-1α). PLoS ONE, 2011, 6, e16210.	2.5	120
23	Adult Leydig Cell Tumors of the Testis Caused by Germline Fumarate Hydratase Mutations. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 3071-3075.	3.6	113
24	OGFOD1 catalyzes prolyl hydroxylation of RPS23 and is involved in translation control and stress granule formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4031-4036.	7.1	105
25	Dysregulation of hypoxia pathways in fumarate hydratase-deficient cells is independent of defective mitochondrial metabolism. Human Molecular Genetics, 2010, 19, 3844-3851.	2.9	91
26	Evidence of increased microvessel density and activation of the hypoxia pathway in tumours from the hereditary leiomyomatosis and renal cell cancer syndrome. Journal of Pathology, 2005, 205, 41-49.	4.5	86
27	Clinical manifestations of familial paraganglioma and phaeochromocytomas in <i>succinate dehydrogenase B</i> (<i>SDHâ€B</i>) gene mutation carriers. Clinical Endocrinology, 2008, 69, 587-596.	2.4	81
28	A Role for Cytosolic Fumarate Hydratase in Urea Cycle Metabolism and Renal Neoplasia. Cell Reports, 2013, 3, 1440-1448.	6.4	78
29	Hif-2α is not essential for cell-autonomous hematopoietic stem cell maintenance. Blood, 2013, 122, 1741-1745.	1.4	75
30	Succinate: A New Epigenetic Hacker. Cancer Cell, 2013, 23, 709-711.	16.8	71
31	Distinct expression profile in fumarate-hydratase-deficient uterine fibroids. Human Molecular Genetics, 2006, 15, 97-103.	2.9	67
32	Expression Profiling in Progressive Stages of Fumarate-Hydratase Deficiency: The Contribution of Metabolic Changes to Tumorigenesis. Cancer Research, 2010, 70, 9153-9165.	0.9	63
33	Fumarate hydratase is a critical metabolic regulator of hematopoietic stem cell functions. Journal of Experimental Medicine, 2017, 214, 719-735.	8.5	62
34	Severe polyposis in Apc ^{1322T} mice is associated with submaximal Wnt signalling and increased expression of the stem cell marker <i>Lgr5</i> . Gut, 2010, 59, 1680-1686.	12.1	60
35	Mutations of the PU.1 Ets domain are specifically associated with murine radiation-induced, but not human therapy-related, acute myeloid leukaemia. Oncogene, 2005, 24, 3678-3683.	5.9	58
36	Fumarate Hydratase Deletion in Pancreatic β Cells Leads to Progressive Diabetes. Cell Reports, 2017, 20, 3135-3148.	6.4	57

#	Article	IF	CITATIONS
37	Puzzling Patterns of Predisposition. Science, 2009, 324, 192-194.	12.6	55
38	The Apc1322T Mouse Develops Severe Polyposis Associated With Submaximal Nuclear β-Catenin Expression. Gastroenterology, 2009, 136, 2204-2213.e13.	1.3	55
39	The Succinated Proteome of FH-Mutant Tumours. Metabolites, 2014, 4, 640-654.	2.9	48
40	Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism. Hypoxia (Auckland, N) Tj ETQq	0 0 0 rgBT 1.9	/Overlock 10 43
41	Telomerase reverse transcriptase promoter mutations in tumors originating from the adrenal gland and extra-adrenal paraganglia. Endocrine-Related Cancer, 2014, 21, 653-661.	3.1	39
42	Roles of individual prolylâ€4â€hydroxylase isoforms in the first 24 hours following transient focal cerebral ischaemia: insights from genetically modified mice. Journal of Physiology, 2012, 590, 4079-4091.	2.9	37
43	Contrasting clinical manifestations of SDHB and VHL associated chromaffin tumours. Endocrine-Related Cancer, 2009, 16, 515-525.	3.1	35
44	Comparative bioenergetic assessment of transformed cells using a cell energy budget platform. Integrative Biology (United Kingdom), 2011, 3, 1135.	1.3	33
45	Mutation screening of fumarate hydratase by multiplex ligation-dependent probe amplification: detection of exonic deletion in a patient with leiomyomatosis and renal cell cancer. Cancer Genetics and Cytogenetics, 2008, 183, 83-88.	1.0	30
46	Cells Lacking the Fumarase Tumor Suppressor Are Protected from Apoptosis through a Hypoxia-Inducible Factor-Independent, AMPK-Dependent Mechanism. Molecular and Cellular Biology, 2012, 32, 3081-3094.	2.3	29
47	Renal cell carcinoma: translational aspects of metabolism and therapeutic consequences. Kidney International, 2013, 84, 667-681.	5.2	28
48	Concise Review: Genetic Dissection of Hypoxia Signaling Pathways in Normal and Leukemic Stem Cells. Stem Cells, 2014, 32, 1390-1397.	3.2	27
49	Myosin V-mediated vacuole distribution and fusion in fission yeast. Current Biology, 2001, 11, 1124-1127.	3.9	25
50	Current Morphologic Criteria Perform Poorly in Identifying Hereditary Leiomyomatosis and Renal Cell Carcinoma Syndrome-associated Uterine Leiomyomas. International Journal of Gynecological Pathology, 2014, 33, 560-567.	1.4	25
51	Hypoxia Signaling in Hematopoietic Stem Cells: A Double-Edged Sword. Cell Stem Cell, 2010, 7, 276-278.	11.1	22
52	The Câ€ŧerminus of Apc does not influence intestinal adenoma development or progression. Journal of Pathology, 2012, 226, 73-83.	4.5	16
53	Rewiring Mitochondrial Pyruvate Metabolism: Switching Off the Light in Cancer Cells?. Molecular Cell, 2014, 56, 343-344.	9.7	13
54	Aberrant expression of apoptosis proteins and ultrastructural aberrations in uterine leiomyomas from patients with hereditary leiomyomatosis and renal cell carcinoma. Fertility and Sterility, 2006, 86, 961-971.	1.0	5

#	Article	IF	CITATIONS
55	Novel Insights into FH-associated Disease are KEAPing the Lid on Oncogenic HIF Signalling. Oncotarget, 2011, 2, 820-821.	1.8	4
56	HIF-1α Is Not Essential For The Establishment Of MLL-Leukaemic Stem Cells. Blood, 2013, 122, 3767-3767.	1.4	3
57	In the ring with polycystic kidney disease—avoiding the knockout punch. Journal of Pathology, 2011, 223, 1-3.	4.5	0