Wei Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4529140/publications.pdf

Version: 2024-02-01

279798 276875 1,712 43 23 41 h-index citations g-index papers 46 46 46 1474 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Baseâ€Promoted Threeâ€Component Cyclization and Coupling Strategy for the Synthesis of Substituted 3â€Arylâ€5â€thioâ€1,3,4â€thiadiazoleâ€2â€thiones. Asian Journal of Organic Chemistry, 2022, 11, e202100745.	2.7	6
2	Photocatalytic cross-dehydrogenative coupling reaction toward the synthesis of $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$ -disubstituted hydrazides and their bromides. Organic Chemistry Frontiers, 2022, 9, 3012-3021.	4.5	13
3	Copper-Catalyzed Phosphorylation of $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$ -Disubstituted Hydrazines: Synthesis of Multisubstituted Phosphorylhydrazides as Potential Anticancer Agents. Journal of Organic Chemistry, 2022, 87, 6224-6236.	3.2	11
4	Metal-Free Temperature-Controlled Intermolecular $[3+2]$ Annulation to Access Benzo[<i>d</i>]thiazole-2(3 <i>H</i>)-thiones and Benzo[<i>d</i>]thiazol-2(3 <i>H</i>)-ones. Journal of Organic Chemistry, 2022, 87, 10467-10475.	3.2	7
5	Recent Developments in Photoâ€Catalyzed/Promoted Synthesis of Indoles and Their Functionalization: Reactions and Mechanisms. Advanced Synthesis and Catalysis, 2021, 363, 62-119.	4.3	44
6	Photocatalyzed intermolecular amination for the synthesis of hydrazonamides. Organic Chemistry Frontiers, 2021, 8, 3838-3846.	4.5	11
7	Progress in Photoinduced Radical Reactions using Electron Donorâ€Acceptor Complexes. Asian Journal of Organic Chemistry, 2021, 10, 711-748.	2.7	77
8	Synthesis of Purine Analogues: Photocatalyst-Free Visible-Light-Enhanced Annulation Approach to Pyrazolo[1,5- <i>a</i>][1,3,5]triazine-2,4-diamines. Journal of Organic Chemistry, 2021, 86, 8365-8380.	3.2	17
9	Photocatalytic Threeâ€Component Tandem Annulation Access to Multiply Substituted 1,2,4â€Triazoleâ€3,5â€diamines. Asian Journal of Organic Chemistry, 2021, 10, 3034-3038.	2.7	8
10	Molluscicides against the snail-intermediate host of Schistosoma: a review. Parasitology Research, 2021, 120, 3355-3393.	1.6	18
11	Green Catalyst―and Additiveâ€Free Threeâ€Component Deamination Cyclization Synthesis of 3â€Substitutedâ€oxoâ€2â€quinazolinonyl Sulfides. ChemistrySelect, 2021, 6, 11768-11774.	[4― 1.5	3
12	Metal- and Oxidant-Free Green Three-Component Desulfurization and Deamination Condensation Approach to Fully Substituted $1 < i > H < i > -1,2,4$ -Triazol-3-amines and Their Photophysical Properties. Journal of Organic Chemistry, 2021, 86, 17986-18003.	3.2	22
13	Visible-Light-Catalyzed $[3+1+2]$ Coupling Annulations for the Synthesis of Unsymmetrical Trisubstituted Amino-1,3,5-triazines. Journal of Organic Chemistry, 2019, 84, 15508-15519.	3.2	25
14	Photodriven Photocatalyst/Metal-Free Direct C–C/C–N Bond Formation: Synthesis of Indoles via EDA Complexes. Journal of Organic Chemistry, 2019, 84, 14168-14178.	3.2	13
15	Recent advances in photocatalytic Câ€"S/Pâ€"S bond formation <i>via</i> the generation of sulfur centered radicals and functionalization. Organic Chemistry Frontiers, 2019, 6, 2048-2066.	4.5	91
16	Developments towards synthesis of N-heterocycles from amidines <i>via</i> C–N/C–C bond formation. Organic Chemistry Frontiers, 2019, 6, 2120-2141.	4.5	94
17	Visible-Light-Promoted Three-Component Coupling Annulation: Synthesis of 2-Iminothiazolidin-4-ones via in Situ Formed Electron Donor–Acceptor Complexes. Journal of Organic Chemistry, 2019, 84, 6448-6458.	3.2	21
18	Visible Light-Promoted Three-Component Tandem Annulation for the Synthesis of 2-Iminothiazolidin-4-ones. Journal of Organic Chemistry, 2018, 83, 1402-1413.	3.2	35

#	Article	IF	CITATIONS
19	Carbonylation Access to Phthalimides Using Self-Sufficient Directing Group and Nucleophile. Journal of Organic Chemistry, 2018, 83, 104-112.	3.2	30
20	Direct Photocatalytic S–H Bond Cyanation with Green "CN―Source. Journal of Organic Chemistry, 2018, 83, 6580-6588.	3.2	67
21	Baseâ€Promoted Metalâ€∮Oxidantâ€Free Threeâ€Component Tandem Annulation: A Strategy for the Construction of 2,4,5â€Trisubstituted Thiazoles via Câ^'N Bond Cleavage of Amidines. Asian Journal of Organic Chemistry, 2018, 7, 1893-1897.	2.7	13
22	Cu-Catalyzed intermolecular $[3+3]$ annulation involving oxidative activation of an unreactive $C(sp < sup > 3 < /sup >)$ and $ext{access}$ to pyrimidine derivatives from amidines and ketones. Organic Chemistry Frontiers, 2017, 4, 1107-1111.	4.5	25
23	Palladium-Catalyzed Fluoroalkylative Cyclization of Olefins. Organic Letters, 2017, 19, 1008-1011.	4.6	49
24	Triethylene glycol-modified iridium(iii) complexes for fluorescence imaging of Schistosoma japonicum. Journal of Materials Chemistry B, 2017, 5, 4973-4980.	5.8	7
25	Metalâ€Free, TBHPâ€Mediated, [3+2+1]â€Type Intermolecular Cycloaddition Reaction: Synthesis of Pyrimidines from Amidines, Ketones, and DMF through C(sp ³)â°H Activation. Asian Journal of Organic Chemistry, 2017, 6, 837-840.	2.7	21
26	A Fourâ€Component Reaction Strategy for Pyrimidine Carboxamide Synthesis. Angewandte Chemie, 2017, 129, 1309-1313.	2.0	11
27	A Fourâ€Component Reaction Strategy for Pyrimidine Carboxamide Synthesis. Angewandte Chemie - International Edition, 2017, 56, 1289-1293.	13.8	58
28	Photocatalytic direct Câ€"S bond formation: facile access to 3-sulfenylindoles via metal-free C-3 sulfenylation of indoles with thiophenols. RSC Advances, 2017, 7, 37739-37742.	3.6	62
29	Base-Mediated Three-Component Tandem Reactions for the Synthesis of Multisubstituted Pyrimidines. Journal of Organic Chemistry, 2017, 82, 13609-13616.	3.2	25
30	Transition Metal Free Intermolecular Direct Oxidative C–N Bond Formation to Polysubstituted Pyrimidines Using Molecular Oxygen as the Sole Oxidant. Journal of Organic Chemistry, 2016, 81, 5538-5546.	3.2	43
31	Metal-Free Catalyzed Regioselective Allylic Trifluoromethanesulfonylation of Aromatic Allylic Alcohols with Sodium Trifluoromethanesulfinate. Journal of Organic Chemistry, 2016, 81, 1304-1309.	3.2	37
32	Discovery of molluscicidal and cercaricidal activities of 3-substituted quinazolinone derivatives by a scaffold hopping approach using a pseudo-ring based on the intramolecular hydrogen bond formation. European Journal of Medicinal Chemistry, 2016, 115, 291-294.	5.5	8
33	Base mediated direct C–H amination for pyrimidines synthesis from amidines and cinnamaldehydes using oxygen as green oxidants. Chinese Chemical Letters, 2016, 27, 47-50.	9.0	30
34	Copper-Catalyzed Oxidative C(sp ³) $\hat{a}\in$ H Functionalization for Facile Synthesis of 1,2,4-Triazoles and 1,3,5-Triazines from Amidines. Organic Letters, 2015, 17, 2894-2897.	4.6	94
35	A facile approach to synthesize 3,5-disubstituted-1,2,4-oxadiazoles via copper-catalyzed-cascade annulation of amidines and methylarenes. Chemical Communications, 2015, 51, 8857-8860.	4.1	39
36	Palladium-Catalyzed Oxidative O–H/N–H Carbonylation of Hydrazides: Access to Substituted 1,3,4-Oxadiazole-2(3 <i>H</i>)-ones. Journal of Organic Chemistry, 2015, 80, 5713-5718.	3.2	24

Wei Guo

#	Article	IF	CITATION
37	Design, Synthesis, and Cercaricidal Activity of Novel Highâ€efficient, Lowâ€ŧoxic Selfâ€spreading <scp>PEG</scp> â€∢i>Nâ€salicylanilide Derivatives Against Cercariae Larvae of <i>Schistosome Japonicum</i> Floating on the Water Surface. Chemical Biology and Drug Design, 2015, 85, 527-533.	3.2	5
38	Palladium-Catalyzed Desulfitative Oxidative Coupling between Arenesulfinic Acid Salts and Allylic Alcohols: A Strategy for the Selective Construction of \hat{l}^2 -Aryl Ketones and Aldehydes. Journal of Organic Chemistry, 2015, 80, 8903-8909.	3.2	33
39	Direct oxidative coupling of amidine hydrochlorides and methylarenes: TBHP-mediated synthesis of substituted 1,3,5-triazines under metal-free conditions. Organic and Biomolecular Chemistry, 2015, 13, 10285-10289.	2.8	21
40	Decarboxylative Alkynylation and Carbonylative Alkynylation of Carboxylic Acids Enabled by Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2015, 54, 11196-11199.	13.8	280
41	<i>De Novo</i> Synthesis of γ,γâ€Disubstituted Butyrolactones through a Visible Light Photocatalytic Arylation–Lactonization Sequence. Advanced Synthesis and Catalysis, 2014, 356, 2787-2793.	4.3	74
42	Visible-light-induced photocatalytic formyloxylation reactions of 3-bromooxindoles with water and DMF: the scope and mechanism. Green Chemistry, 2014, 16, 3787-3795.	9.0	47
43	Synthesis and cercaricidal activities of a serial of novel self-diffused cercaricides derived from niphensamide. Chinese Chemical Letters, 2008, 19, 406-408.	9.0	3