Theran P Riedel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/45273/publications.pdf

Version: 2024-02-01

27 papers

2,486 citations

331670
21
h-index

26 g-index

31 all docs

31 docs citations

31 times ranked

2513 citing authors

#	Article	IF	CITATIONS
1	Rapid production of highly oxidized molecules in isoprene aerosol via peroxy and alkoxy radical isomerization pathways in low and high NOx environments: Combined laboratory, computational and field studies. Science of the Total Environment, 2021, 775, 145592.	8.0	11
2	Low temperature thermal treatment of gas-phase fluorotelomer alcohols by calcium oxide. Chemosphere, 2021, 272, 129859.	8.2	15
3	Quantifying wintertime O3 and NOx formation with relevance vector machines. Atmospheric Environment, 2021, 259, 118538.	4.1	5
4	Quantifying wintertime O and NO formation with relevance vector machines. Atmospheric Environment, 2021, 259, 1-118538.	4.1	0
5	Chamber-based insights into the factors controlling epoxydiol (IEPOX) secondary organic aerosol (SOA) yield, composition, and volatility. Atmospheric Chemistry and Physics, 2019, 19, 11253-11265.	4.9	38
6	Time series analysis of wintertime O3 and NOx formation using vector autoregressions. Atmospheric Environment, 2019, 218, 116988.	4.1	9
7	An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas: NO _x and VOC Control as Mitigation Strategies. Geophysical Research Letters, 2019, 46, 4971-4979.	4.0	80
8	Gas-Phase Detection of Fluorotelomer Alcohols and Other Oxygenated Per- and Polyfluoroalkyl Substances by Chemical Ionization Mass Spectrometry. Environmental Science and Technology Letters, 2019, 6, 289-293.	8.7	25
9	Mutagenic atmospheres resulting from the photooxidation of aromatic hydrocarbon and NOx mixtures. Atmospheric Environment, 2018, 178, 164-172.	4.1	16
10	Constraining condensed-phase formation kinetics of secondary organic aerosol components from isoprene epoxydiols. Atmospheric Chemistry and Physics, 2016, 16, 1245-1254.	4.9	46
11	Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: Implications for IEPOX Derived SOA. Environmental Science & Epox Derived SOA. Epox Derived SOA. Environmental Science & Epox Derived SOA. Epox Der	10.0	141
12	Heterogeneous Reactions of Isoprene-Derived Epoxides: Reaction Probabilities and Molar Secondary Organic Aerosol Yield Estimates. Environmental Science and Technology Letters, 2015, 2, 38-42.	8.7	89
13	Reactive Uptake of an Isoprene-Derived Epoxydiol to Submicron Aerosol Particles. Environmental Science & Technology, 2014, 48, 11178-11186.	10.0	208
14	On the Role of Particle Inorganic Mixing State in the Reactive Uptake of N ₂ O ₅ to Ambient Aerosol Particles. Environmental Science & Environmental Science	10.0	58
15	The primary and recycling sources of OH during the NACHTTâ€2011 campaign: HONO as an important OH primary source in the wintertime. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6886-6896.	3.3	66
16	An MCM modeling study of nitryl chloride (ClNO ₂) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow. Atmospheric Chemistry and Physics, 2014, 14, 3789-3800.	4.9	87
17	N ₂ O ₅ uptake coefficients and nocturnal NO ₂ removal rates determined from ambient wintertime measurements. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9331-9350.	3.3	87
18	Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT): Overview of a wintertime air chemistry field study in the front range urban corridor of Colorado. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8067-8085.	3.3	68

#	Article	IF	CITATIONS
19	Chlorine activation within urban or power plant plumes: Vertically resolved ClNO ₂ and Cl ₂ measurements from a tall tower in a polluted continental setting. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8702-8715.	3.3	94
20	Phase partitioning of soluble trace gases with sizeâ€resolved aerosols in nearâ€surface continental air over northern Colorado, USA, during winter. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9414-9427.	3.3	56
21	Direct N ₂ O ₅ reactivity measurements at a polluted coastal site. Atmospheric Chemistry and Physics, 2012, 12, 2959-2968.	4.9	64
22	Nitryl Chloride and Molecular Chlorine in the Coastal Marine Boundary Layer. Environmental Science & E	10.0	177
23	The sea breeze/land breeze circulation in Los Angeles and its influence on nitryl chloride production in this region. Journal of Geophysical Research, 2012, 117, .	3.3	54
24	A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature, 2010, 464, 271-274.	27.8	562
25	Chlorine activation by N _{O₅: simultaneous, in situ detection of ClNO₂ and N_{2_{5_{by chemical}}}}	3.1	193
26	Direct observations of N ₂ O ₅ reactivity on ambient aerosol particles. Geophysical Research Letters, 2009, 36, .	4.0	124
27	Spectral and thermodynamic properties of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(IV), and Zn(II) binding by methanobactin from Methylosinus trichosporium OB3b. Journal of Inorganic Biochemistry, 2006, 100, 2150-2161.	3.5	106