Xirui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4525977/publications.pdf

Version: 2024-02-01

687363 501196 27 863 13 28 citations h-index g-index papers 28 28 28 1430 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Controlled Growth of Unusual Nanocarbon Allotropes by Molten Electrolysis of CO2. Catalysts, 2022, 12, 125.	3.5	13
2	Controlled Transition Metal Nucleated Growth of Carbon Nanotubes by Molten Electrolysis of CO2. Catalysts, 2022, 12, 137.	3.5	8
3	CO ₂ Utilization by Electrolytic Splitting to Carbon Nanotubes in Nonâ€Lithiated, Costâ€Effective, Molten Carbonate Electrolytes. Advanced Sustainable Systems, 2022, 6, .	5.3	6
4	Green and scalable separation and purification of carbon materials in molten salt by efficient high-temperature press filtration. Separation and Purification Technology, 2021, 255, 117719.	7.9	9
5	Preparation and electrochemical property of TiO2/porous carbon composite cathode derived from waste tea leaves for electrocatalytic degradation of phenol. Journal of Applied Electrochemistry, 2021, 51, 653-667.	2.9	4
6	An alternative electron-donor and highly thermo-assisted strategy for solar-driven water splitting redox chemistry towards efficient hydrogen production plus effective wastewater treatment. Renewable Energy, 2021, 176, 388-401.	8.9	9
7	Towards efficient solar demulsification (I): A solar electrical role on interfacial film of emulsions. Sustainable Materials and Technologies, 2021, 30, e00344.	3.3	5
8	STEP polymer degradation: Solar thermo-coupled electrochemical depolymerization of plastics to generate useful fuel plus abundant hydrogen. Solar Energy Materials and Solar Cells, 2020, 204, 110208.	6.2	24
9	Solar-driven highly thermal electrochemical oxidation in the temperature of more than 100 °C for sustainable treatment of organic pollutants in wastewater. Renewable Energy, 2020, 147, 2171-2178.	8.9	10
10	Transformation of the greenhouse gas carbon dioxide to graphene. Journal of CO2 Utilization, 2020, 36, 288-294.	6.8	40
11	Calcium metaborate induced thin walled carbon nanotube syntheses from CO2 by molten carbonate electrolysis. Scientific Reports, 2020, 10, 15146.	3.3	13
12	Magnetic carbon nanotubes: Carbide nucleated electrochemical growth of ferromagnetic CNTs from CO2. Journal of CO2 Utilization, 2020, 40, 101218.	6.8	16
13	An insight into solar thermo-assisted and organic-molecule alternated water splitting chemistry for hydrogen production and wastewater treatment by elucidating redox model and thermodynamics. Energy Conversion and Management, 2020, 226, 113551.	9.2	2
14	One pot facile transformation of CO2 to an unusual 3-D nano-scaffold morphology of carbon. Scientific Reports, 2020, 10, 21518.	3.3	16
15	Positive P/g-C3N4 thermo-coupled photocatalytic oxidation of refractory organics in wastewater for total utilization of solar Vis-IR region. Materials Chemistry and Physics, 2020, 253, 123307.	4.0	9
16	Nickel and cobalt metal-organic-frameworks-derived hollow microspheres porous carbon assembled from nanorods and nanospheres for outstanding supercapacitors. Journal of Colloid and Interface Science, 2020, 575, 96-107.	9.4	50
17	Solar Multifield-Driven Hybrid Chemical System for Purification of Organic Wastewater Focused on a Nano-Carbon/TiO ₂ /Ti Central Electrode. Industrial & Engineering Chemistry Research, 2020, 59, 11527-11536.	3.7	4
18	Carbon Nanoâ€Onions Made Directly from CO2by Molten Electrolysis for Greenhouse Gas Mitigation. Advanced Sustainable Systems, 2019, 3, 1900056.	5.3	24

XIRUI WANG

#	Article	IF	CITATION
19	Exploration of alkali cation variation on the synthesis of carbon nanotubes by electrolysis of CO2 in molten carbonates. Journal of CO2 Utilization, 2019, 34, 303-312.	6.8	37
20	E-carbon antenna-assembled TiO2 nanotubes for sensitization of photocatalytic reaction exemplified by enhanced oxidation of nitrobenzene. Chemical Engineering Journal, 2019, 375, 121992.	12.7	11
21	Three-Dimensional Hierarchical Porous Carbon Cathode Derived from Waste Tea Leaves for the Electrocatalytic Degradation of Phenol. Langmuir, 2019, 35, 12914-12926.	3 . 5	25
22	Corrugated Paper-Based Activated Carbon as a Bifunctional Material for the Electrocatalytic Degradation and High-Performance Supercapacitors. Journal of the Electrochemical Society, 2019, 166, A2199-A2208.	2.9	8
23	An insight into the solar demulsification of highly emulsified water produced from oilfields by monitoring the viscosity, zeta potential, particle size and rheology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575, 144-154.	4.7	34
24	Chelation-assisted assembly of multidentate colloidal nanoparticles into metal–organic nanoparticles. Nanoscale, 2018, 10, 21369-21373.	5.6	2
25	Macroscale Lateral Alignment of Semiconductor Nanorods into Freestanding Thin Films. Journal of the American Chemical Society, 2013, 135, 6022-6025.	13.7	30
26	Self-Assembled Colloidal Superparticles from Nanorods. Science, 2012, 338, 358-363.	12.6	332
27	Shape-Controlled Synthesis of Colloidal Superparticles from Nanocubes. Journal of the American Chemical Society, 2012, 134, 18225-18228.	13.7	121