Tommaso Leonardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4525706/publications.pdf

Version: 2024-02-01

27 papers

3,331 citations

394421 19 h-index 26 g-index

31 all docs

31 docs citations

31 times ranked 6602 citing authors

#	Article	IF	CITATIONS
1	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	12.2	1,020
2	A novel community driven software for functional enrichment analysis of extracellular vesicles data. Journal of Extracellular Vesicles, 2017, 6, 1321455.	12.2	314
3	Extracellular Vesicles from Neural Stem Cells Transfer IFN- \hat{I}^3 via Ifngr1 to Activate Stat1 Signaling in Target Cells. Molecular Cell, 2014, 56, 193-204.	9.7	258
4	Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles. International Journal of Molecular Sciences, 2016, 17, 171.	4.1	231
5	Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation. Cell Stem Cell, 2018, 22, 355-368.e13.	11.1	216
6	RNA modifications detection by comparative Nanopore direct RNA sequencing. Nature Communications, 2021, 12, 7198.	12.8	163
7	Quantitative gene profiling of long noncoding RNAs with targeted RNA sequencing. Nature Methods, 2015, 12, 339-342.	19.0	155
8	ISEV position paper: extracellular vesicle RNA analysis and bioinformatics. Journal of Extracellular Vesicles, 2013, 2, .	12.2	126
9	pycoQC, interactive quality control for Oxford Nanopore Sequencing. Journal of Open Source Software, 2019, 4, 1236.	4.6	121
10	Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci. Genome Biology, 2018, 19, 32.	8.8	114
11	Extracellular vesicles are independent metabolic units with asparaginase activity. Nature Chemical Biology, 2017, 13, 951-955.	8.0	107
12	Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS Biology, 2021, 19, e3001166.	5.6	95
13	Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases. Biogerontology, 2015, 16, 147-185.	3.9	57
14	Acellular approaches for regenerative medicine: on the verge of clinical trials with extracellular membrane vesicles?. Stem Cell Research and Therapy, 2015, 6, 227.	5.5	50
15	Computational methods for RNA modification detection from nanopore direct RNA sequencing data. RNA Biology, 2021, 18, 31-40.	3.1	48
16	Extracellular Membrane Vesicles and Immune Regulation in the Brain. Frontiers in Physiology, 2012, 3, 117.	2.8	45
17	Transposonâ€driven transcription is a conserved feature of vertebrate spermatogenesis and transcript evolution. EMBO Reports, 2017, 18, 1231-1247.	4.5	34
18	Improved definition of the mouse transcriptome via targeted RNA sequencing. Genome Research, 2016, 26, 705-716.	5.5	33

#	Article	IF	Citations
19	SUMOylation promotes survival and integration of neural stem cell grafts in ischemic stroke. EBioMedicine, 2019, 42, 214-224.	6.1	33
20	Methylation of histone H3 at lysine 37 by Set1 and Set2 prevents spurious DNA replication. Molecular Cell, 2021, 81, 2793-2807.e8.	9.7	18
21	Nanopore ReCappable sequencing maps SARS-CoV-2 5′ capping sites and provides new insights into the structure of sgRNAs. Nucleic Acids Research, 2022, 50, 3475-3489.	14.5	12
22	Direct RNA Sequencing for the Study of Synthesis, Processing, and Degradation of Modified Transcripts. Frontiers in Genetics, 2020, 11, 394.	2.3	11
23	Bedparse: feature extraction from BED files. Journal of Open Source Software, 2019, 4, 1228.	4.6	7
24	Nanopore RNA Sequencing Analysis. Methods in Molecular Biology, 2021, 2284, 569-578.	0.9	6
25	Extracellular Vesicles from Neural Stem Cells Transfer IFN- \hat{l}^3 via Ifngr1 to Activate Stat1 Signaling in Target Cells. Molecular Cell, 2014, 56, 609.	9.7	3
26	Interfacing Polymers and Tissues: Quantitative Local Assessment of the Foreign Body Reaction of Mononuclear Phagocytes to Polymeric Materials. Advanced Biology, 2017, 1, e1700021.	3.0	2
27	Group I metabotropic glutamate receptor signaling regulates the release of BDNF and LIF by neural stem cells. Matters, 0, , .	1.0	0