David R Sherwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4525465/publications.pdf

Version: 2024-02-01

65 papers 3,490 citations

147801 31 h-index 53 g-index

123 all docs

123
docs citations

times ranked

123

3255 citing authors

#	Article	IF	CITATIONS
1	Localized glucose import, glycolytic processing, and mitochondria generate a focused ATP burst to power basement-membrane invasion. Developmental Cell, 2022, 57, 732-749.e7.	7.0	22
2	A basement membrane discovery pipeline uncovers network complexity, regulators, and human disease associations. Science Advances, 2022, 8, eabn2265.	10.3	76
3	Visualizing cytoplasmic ATP in C.Âelegans larvae using PercevalHR. STAR Protocols, 2022, 3, 101429.	1.2	1
4	Fueling Cell Invasion through Extracellular Matrix. Trends in Cell Biology, 2021, 31, 445-456.	7.9	29
5	Basement membrane remodeling guides cell migration and cell morphogenesis during development. Current Opinion in Cell Biology, 2021, 72, 19-27.	5.4	31
6	Comprehensive Endogenous Tagging of Basement Membrane Components Reveals Dynamic Movement within the Matrix Scaffolding. Developmental Cell, 2020, 54, 60-74.e7.	7.0	95
7	Mammalian hemicentin 1 is assembled into tracks in the extracellular matrix of multiple tissues. Developmental Dynamics, 2020, 249, 775-788.	1.8	12
8	Stem cell niche exit in C. elegans via orientation and segregation of daughter cells by a cryptic cell outside the niche. ELife, 2020, 9, .	6.0	26
9	Tissue linkage through adjoining basement membranes: The long and the short term of it. Matrix Biology, 2019, 75-76, 58-71.	3.6	22
10	α-Integrins dictate distinct modes of type IV collagen recruitment to basement membranes. Journal of Cell Biology, 2019, 218, 3098-3116.	5.2	49
11	Adaptive F-Actin Polymerization and Localized ATP Production Drive Basement Membrane Invasion in the Absence of MMPs. Developmental Cell, 2019, 48, 313-328.e8.	7.0	110
12	MANF deletion abrogates early larval Caenorhabditis elegans stress response to tunicamycin and Pseudomonas aeruginosa. European Journal of Cell Biology, 2019, 98, 151043.	3.6	18
13	Ectopic Germ Cells Can Induce Niche-like Enwrapment by Neighboring Body Wall Muscle. Current Biology, 2019, 29, 823-833.e5.	3.9	16
14	A Scalable CURE Using a CRISPR/Cas9 Fluorescent Protein Knock-In Strategy in Caenorhabditis elegans. Journal of Microbiology and Biology Education, 2019, 20, 70.	1.0	8
15	Endogenous expression of UNC-59/Septin in. MicroPublication Biology, 2019, 2019, .	0.1	1
16	Invading, Leading and Navigating Cells in <i>Caenorhabditis elegans</i> : Insights into Cell Movement <i>in Vivo</i> . Genetics, 2018, 208, 53-78.	2.9	48
17	Forces drive basement membrane invasion in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11537-11542.	7.1	27
18	Swimming Exercise and Transient Food Deprivation in Caenorhabditis elegans Promote Mitochondrial Maintenance and Protect Against Chemical-Induced Mitotoxicity. Scientific Reports, 2018, 8, 8359.	3.3	38

#	Article	IF	Citations
19	Nonselective autophagy reduces mitochondrial content during starvation in <i>Caenorhabditis elegans</i> . American Journal of Physiology - Cell Physiology, 2018, 315, C781-C792.	4.6	22
20	Basement membranes. Current Biology, 2017, 27, R207-R211.	3.9	223
21	Morphogenesis: Shaping Tissues through Extracellular Force Gradients. Current Biology, 2017, 27, R850-R852.	3.9	3
22	Live-cell confocal microscopy and quantitative 4D image analysis of anchor-cell invasion through the basement membrane in Caenorhabditis elegans. Nature Protocols, 2017, 12, 2081-2096.	12.0	35
23	Breaching and Opening Basement Membrane Barriers: The Anchor Cell Leads the Way. Biology of Extracellular Matrix, 2017, , 91-115.	0.3	0
24	Cell Invasion InÂVivo via Rapid Exocytosis of a Transient Lysosome-Derived Membrane Domain. Developmental Cell, 2017, 43, 403-417.e10.	7.0	67
25	Identification of regulators of germ stem cell enwrapment by its niche in C. elegans. Developmental Biology, 2017, 429, 271-284.	2.0	23
26	A Sensitized Screen for Genes Promoting Invadopodia Function In Vivo: CDC-42 and Rab GDI-1 Direct Distinct Aspects of Invadopodia Formation. PLoS Genetics, 2016, 12, e1005786.	3.5	41
27	A new front in cell invasion: The invadopodial membrane. European Journal of Cell Biology, 2016, 95, 441-448.	3.6	27
28	Tissue Sculpting by Fibrils. Developmental Cell, 2016, 38, 1-3.	7.0	4
29	SPARC Promotes Cell Invasion In Vivo by Decreasing Type IV Collagen Levels in the Basement Membrane. PLoS Genetics, 2016, 12, e1005905.	3.5	63
30	Boundary cells restrict dystroglycan trafficking to control basement membrane sliding during tissue remodeling. ELife, $2016, 5, .$	6.0	12
31	RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization. PLoS Genetics, 2015, 11, e1005484.	3.5	74
32	Basement Membranes in the Worm. Current Topics in Membranes, 2015, 76, 337-371.	0.9	27
33	An active role for basement membrane assembly and modification in tissue sculpting. Journal of Cell Science, 2015, 128, 1661-8.	2.0	117
34	A developmental biologist's "outside-the-cell―thinking. Journal of Cell Biology, 2015, 210, 369-372.	5.2	13
35	Invasive Cell Fate Requires G1 Cell-Cycle Arrest and Histone Deacetylase-Mediated Changes in Gene Expression. Developmental Cell, 2015, 35, 162-174.	7.0	120
36	The unfolded protein response is required for dendrite morphogenesis. ELife, 2015, 4, e06963.	6.0	42

#	Article	IF	CITATIONS
37	Invadopodia and basement membrane invasion in vivo. Cell Adhesion and Migration, 2014, 8, 246-255.	2.7	61
38	Traversing the basement membrane in vivo: A diversity of strategies. Journal of Cell Biology, 2014, 204, 291-302.	5. 2	157
39	Identification of Late Larval Stage Developmental Checkpoints in Caenorhabditis elegans Regulated by Insulin/IGF and Steroid Hormone Signaling Pathways. PLoS Genetics, 2014, 10, e1004426.	3.5	76
40	Should I stay or should I go? Identification of novel nutritionally regulated developmental checkpoints in <i>C. elegans</i> . Worm, 2014, 3, e979658.	1.0	5
41	Cell division and targeted cell cycle arrest opens and stabilizes basement membrane gaps. Nature Communications, 2014, 5, 4184.	12.8	36
42	MIG-10 (lamellipodin) has netrin-independent functions and is a FOS-1A transcriptional target during anchor cell invasion in <i>C. elegans</i>). Development (Cambridge), 2014, 141, 1342-1353.	2.5	21
43	ADF/cofilin promotes invadopodial membrane recycling during cell invasion in vivo. Journal of Cell Biology, 2014, 204, 1209-1218.	5.2	41
44	In Situ Imaging in C.Âelegans Reveals Developmental Regulation of Microtubule Dynamics. Developmental Cell, 2014, 29, 203-216.	7.0	34
45	Repurposing an endogenous degradation system for rapid and targeted depletion of <i>C. elegans </i> proteins. Development (Cambridge), 2014, 141, 4640-4647.	2.5	122
46	B-LINK: A Hemicentin, Plakin, and Integrin-Dependent Adhesion System that Links Tissues by Connecting Adjacent Basement Membranes. Developmental Cell, 2014, 31, 319-331.	7.0	65
47	UNC-6 (netrin) stabilizes oscillatory clustering of the UNC-40 (DCC) receptor to orient polarity. Journal of Cell Biology, 2014, 206, 619-633.	5.2	45
48	MIG-10 (Lamellipodin) stabilizes invading cell adhesion to basement membrane and is a negative transcriptional target of EGL-43 in C. elegans. Biochemical and Biophysical Research Communications, 2014, 452, 328-333.	2.1	13
49	Morphogenesis of the <i>Caenorhabditis elegans</i> vulva. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 75-95.	5.9	51
50	The netrin receptor DCC focuses invadopodia-driven basement membrane transmigration in vivo. Journal of Cell Biology, 2013, 201, 903-913.	5. 2	109
51	Cell invasion through basement membrane. Worm, 2013, 2, e26169.	1.0	21
52	Cell invasion through basement membrane: the anchor cell breaches the barrier. Current Opinion in Cell Biology, 2011, 23, 589-596.	5.4	74
53	Basement membrane sliding and targeted adhesion remodels tissue boundaries during uterine–vulval attachment in Caenorhabditis elegans. Nature Cell Biology, 2011, 13, 641-651.	10.3	109
54	The transcription factor HLH-2/E/Daughterless regulates anchor cell invasion across basement membrane in C. elegans. Developmental Biology, 2011, 357, 380-391.	2.0	29

#	Article	IF	CITATIONS
55	Dissection of Genetic Pathways in C. elegans. Methods in Cell Biology, 2011, 106, 113-157.	1.1	27
56	In Vivo Identification of Regulators of Cell Invasion Across Basement Membranes. Science Signaling, 2010, 3, ra35.	3.6	75
57	Roles for netrin signaling outside of axon guidance: A view from the worm. Developmental Dynamics, 2010, 239, 1296-1305.	1.8	25
58	An expression screen for RhoGEF genes involved in C. elegans gonadogenesis. Gene Expression Patterns, 2009, 9, 397-403.	0.8	15
59	UNC-6 (netrin) orients the invasive membrane of the anchor cell in C. elegans. Nature Cell Biology, 2009, 11, 183-189.	10.3	128
60	Integrin Acts Upstream of Netrin Signaling to Regulate Formation of the Anchor Cell's Invasive Membrane in C. elegans. Developmental Cell, 2009, 17, 187-198.	7.0	113
61	Cell invasion through basement membranes: an anchor of understanding. Trends in Cell Biology, 2006, 16, 250-256.	7.9	59
62	FOS-1 Promotes Basement-Membrane Removal during Anchor-Cell Invasion in C. elegans. Cell, 2005, 121, 951-962.	28.9	178
63	Anchor Cell Invasion into the Vulval Epithelium in C. elegans. Developmental Cell, 2003, 5, 21-31.	7.0	144
64	Caenorhabditis elegans cog-1 Locus Encodes GTX/Nkx6.1 Homeodomain Proteins and Regulates Multiple Aspects of Reproductive System Development. Developmental Biology, 2002, 252, 202-213.	2.0	48
65	Gene expression markers for Caenorhabditis elegans vulval cells. Mechanisms of Development, 2002, 119, S203-S209.	1.7	64