List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4524652/publications.pdf Version: 2024-02-01

MATTHIAS FOR

#	Article	IF	CITATIONS
1	Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 2018, 9, 2738.	12.8	861
2	Role of phytohormones in insect-specific plant reactions. Trends in Plant Science, 2012, 17, 250-259.	8.8	742
3	Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiology, 2020, 184, 39-52.	4.8	549
4	Tritrophic Interactions Mediated by Herbivore-Induced Plant Volatiles: Mechanisms, Ecological Relevance, and Application Potential. Annual Review of Entomology, 2018, 63, 433-452.	11.8	503
5	Molecular Interactions Between Plants and Insect Herbivores. Annual Review of Plant Biology, 2019, 70, 527-557.	18.7	382
6	Indole is an essential herbivore-induced volatile priming signal in maize. Nature Communications, 2015, 6, 6273.	12.8	349
7	Benzoxazinoid Metabolites Regulate Innate Immunity against Aphids and Fungi in Maize Â. Plant Physiology, 2011, 157, 317-327.	4.8	295
8	Natural Variation in Maize Aphid Resistance Is Associated with 2,4-Dihydroxy-7-Methoxy-1,4-Benzoxazin-3-One Glucoside Methyltransferase Activity Â. Plant Cell, 2013, 25, 2341-2355.	6.6	251
9	Signal signature of abovegroundâ€induced resistance upon belowground herbivory in maize. Plant Journal, 2009, 59, 292-302.	5.7	244
10	Silencing <i>OsHl‣OX</i> makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant Journal, 2009, 60, 638-648.	5.7	244
11	The maize lipoxygenase, <i>Zm<scp>LOX</scp>10</i> , mediates green leaf volatile, jasmonate and herbivoreâ€nduced plant volatile production for defense against insect attack. Plant Journal, 2013, 74, 59-73.	5.7	217
12	Volatiles produced by soilâ€borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant, Cell and Environment, 2014, 37, 813-826.	5.7	214
13	Induction and detoxification of maize 1,4â€benzoxazinâ€3â€ones by insect herbivores. Plant Journal, 2011, 68, 901-911.	5.7	209
14	Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5707-5712.	7.1	179
15	An EARâ€motifâ€containing ERF transcription factor affects herbivoreâ€induced signaling, defense and resistance in rice. Plant Journal, 2011, 68, 583-596.	5.7	166
16	Defence on demand: mechanisms behind optimal defence patterns. Annals of Botany, 2012, 110, 1503-1514.	2.9	165
17	The underestimated role of roots in defense against leaf attackers. Trends in Plant Science, 2009, 14, 653-659.	8.8	162
18	Sequence of arrival determines plantâ€mediated interactions between herbivores. Journal of Ecology, 2011, 99, 7-15.	4.0	160

#	Article	IF	CITATIONS
19	Specific herbivoreâ€induced volatiles defend plants and determine insect community composition in the field. Ecology Letters, 2012, 15, 1130-1139.	6.4	159
20	Interactions between Arthropod-Induced Aboveground and Belowground Defenses in Plants. Plant Physiology, 2008, 146, 867-874.	4.8	152
21	Herbivoreâ€induced plant volatiles mediate host selection by a root herbivore. New Phytologist, 2012, 194, 1061-1069.	7.3	152
22	Leafâ€herbivore attack reduces carbon reserves and regrowth from the roots via jasmonate and auxin signaling. New Phytologist, 2013, 200, 1234-1246.	7.3	150
23	Metabolomics reveals herbivoreâ€induced metabolites of resistance and susceptibility in maize leaves and roots. Plant, Cell and Environment, 2013, 36, 621-639.	5.7	149
24	A specialist root herbivore exploits defensive metabolites to locate nutritious tissues. Ecology Letters, 2012, 15, 55-64.	6.4	146
25	Whole-genome-based revisit of Photorhabdus phylogeny: proposal for the elevation of most Photorhabdus subspecies to the species level and description of one novel species Photorhabdus bodei sp. nov., and one novel subspecies Photorhabdus laumondii subsp. clarkei subsp. nov International lournal of Systematic and Evolutionary Microbiology, 2018, 68, 2664-2681.	1.7	132
26	Insect oral secretions suppress wound-induced responses in Arabidopsis. Journal of Experimental Botany, 2012, 63, 727-737.	4.8	127
27	Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores. ELife, 2015, 4, e04805.	6.0	118
28	Roots under attack: contrasting plant responses to below―and aboveground insect herbivory. New Phytologist, 2016, 210, 413-418.	7.3	109
29	Induced Jasmonate Signaling Leads to Contrasting Effects on Root Damage and Herbivore Performance. Plant Physiology, 2015, 167, 1100-1116.	4.8	104
30	Defensive weapons and defense signals in plants: Some metabolites serve both roles. BioEssays, 2015, 37, 167-174.	2.5	104
31	The role of abscisic acid and water stress in root herbivoreâ€induced leaf resistance. New Phytologist, 2011, 189, 308-320.	7.3	103
32	Long distance root–shoot signalling in plant–insect community interactions. Trends in Plant Science, 2013, 18, 149-156.	8.8	101
33	Volatiles as inducers and suppressors of plant defense and immunity — origins, specificity, perception and signaling. Current Opinion in Plant Biology, 2018, 44, 117-121.	7.1	101
34	Plant iron acquisition strategy exploited by an insect herbivore. Science, 2018, 361, 694-697.	12.6	98
35	The role of glucosinolates and the jasmonic acid pathway in resistance of <i>Arabidopsis thaliana</i> against molluscan herbivores. Molecular Ecology, 2014, 23, 1188-1203.	3.9	95
36	Contrasting Effects of Ethylene Biosynthesis on Induced Plant Resistance against a Chewing and a Piercing-Sucking Herbivore in Rice. Molecular Plant, 2014, 7, 1670-1682.	8.3	94

#	Article	IF	CITATIONS
37	Plant Defenses against Herbivory: Closing the Fitness Gap. Trends in Plant Science, 2018, 23, 187-194.	8.8	91
38	Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field. Plant Biotechnology Journal, 2013, 11, 628-639.	8.3	90
39	Jasmonateâ€dependent depletion of soluble sugars compromises plant resistance to <i><scp>M</scp>anduca sexta</i> . New Phytologist, 2015, 207, 91-105.	7.3	88
40	Reglucosylation of the Benzoxazinoid DIMBOA with Inversion of Stereochemical Configuration is a Detoxification Strategy in Lepidopteran Herbivores. Angewandte Chemie - International Edition, 2014, 53, 11320-11324.	13.8	87
41	Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. Plant Cell, 2016, 28, tpc.00065.2016.	6.6	87
42	Herbivore intoxication as a potential primary function of an inducible volatile plant signal. Journal of Ecology, 2016, 104, 591-600.	4.0	83
43	Synergies and tradeâ€offs between insect and pathogen resistance in maize leaves and roots. Plant, Cell and Environment, 2011, 34, 1088-1103.	5.7	82
44	Molecular Dissection of Early Defense Signaling Underlying Volatile-Mediated Defense Regulation and Herbivore Resistance in Rice. Plant Cell, 2019, 31, 687-698.	6.6	82
45	Systemic root signalling in a belowground, volatileâ€mediated tritrophic interaction. Plant, Cell and Environment, 2011, 34, 1267-1275.	5.7	80
46	A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling. New Phytologist, 2016, 211, 1065-1076.	7.3	80
47	Sequestration of plant secondary metabolites by insect herbivores: molecular mechanisms and ecological consequences. Current Opinion in Insect Science, 2016, 14, 8-11.	4.4	78
48	The Chloroplast-Localized Phospholipases D α4 and α5 Regulate Herbivore-Induced Direct and Indirect Defenses in Rice Â. Plant Physiology, 2011, 157, 1987-1999.	4.8	77
49	3-β-d-Glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc) is an insect detoxification product of maize 1,4-benzoxazin-3-ones. Phytochemistry, 2014, 102, 97-105.	2.9	77
50	Highly localized and persistent induction of <i>Bx1</i> â€dependent herbivore resistance factors in maize. Plant Journal, 2016, 88, 976-991.	5.7	76
51	A specialist root herbivore reduces plant resistance and uses an induced plant volatile to aggregate in a densityâ€dependent manner. Functional Ecology, 2012, 26, 1429-1440.	3.6	75
52	OsLRRâ€RLK1, an early responsive leucineâ€rich repeat receptorâ€like kinase, initiates rice defense responses against a chewing herbivore. New Phytologist, 2018, 219, 1097-1111.	7.3	75
53	A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack. PLoS Biology, 2016, 14, e1002332.	5.6	71
54	Herbivoryâ€induced jasmonates constrain plant sugar accumulation and growth by antagonizing gibberellin signaling and not by promoting secondary metabolite production. New Phytologist, 2017, 215, 803-812.	7.3	71

#	Article	IF	CITATIONS
55	Fungal resistance mediated by maize wallâ€associated kinase Zm <scp>WAK</scp> â€ <scp>RLK</scp> 1 correlates with reduced benzoxazinoid content. New Phytologist, 2019, 221, 976-987.	7.3	71
56	Herbivore-Induced Plant Volatiles Can Serve as Host Location Cues for a Generalist and a Specialist Egg Parasitoid. Journal of Chemical Ecology, 2011, 37, 1304-1313.	1.8	70
57	Auxin Is Rapidly Induced by Herbivore Attack and Regulates a Subset of Systemic, Jasmonate-Dependent Defenses. Plant Physiology, 2016, 172, 521-532.	4.8	69
58	Sequestration and activation of plant toxins protect the western corn rootworm from enemies at multiple trophic levels. ELife, 2017, 6, .	6.0	68
59	Induced Immunity Against Belowground Insect Herbivores- Activation of Defenses in the Absence of a Jasmonate Burst. Journal of Chemical Ecology, 2012, 38, 629-640.	1.8	66
60	Promises and challenges in insect–plant interactions. Entomologia Experimentalis Et Applicata, 2018, 166, 319-343.	1.4	66
61	Identification, quantification, spatiotemporal distribution and genetic variation of major latex secondary metabolites in the common dandelion (Taraxacum officinale agg.). Phytochemistry, 2015, 115, 89-98.	2.9	65
62	Evaluation of primer pairs for microbiome profiling from soils to humans within the One Health framework. Molecular Ecology Resources, 2020, 20, 1558-1571.	4.8	61
63	The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120283.	4.0	60
64	Induced carbon reallocation and compensatory growth as root herbivore tolerance mechanisms. Plant, Cell and Environment, 2014, 37, 2613-2622.	5.7	60
65	A tritrophic signal that attracts parasitoids to host-damaged plants withstands disruption by non-host herbivores. BMC Plant Biology, 2010, 10, 247.	3.6	59
66	Oviposition by a moth suppresses constitutive and herbivore-induced plant volatiles in maize. Planta, 2011, 234, 207-215.	3.2	59
67	Less is More: Treatment with BTH and Laminarin Reduces Herbivore-Induced Volatile Emissions in Maize but Increases Parasitoid Attraction. Journal of Chemical Ecology, 2012, 38, 348-360.	1.8	59
68	Indole primes defence signalling and increases herbivore resistance in tea plants. Plant, Cell and Environment, 2021, 44, 1165-1177.	5.7	59
69	Convergent evolution of a metabolic switch between aphid and caterpillar resistance in cereals. Science Advances, 2018, 4, eaat6797.	10.3	58
70	An herbivore-induced plant volatile reduces parasitoid attraction by changing the smell of caterpillars. Science Advances, 2018, 4, eaar4767.	10.3	57
71	Root volatiles in plant–plant interactions I: High root sesquiterpene release is associated with increased germination and growth of plant neighbours. Plant, Cell and Environment, 2019, 42, 1950-1963.	5.7	57
72	Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. Microbiome, 2021, 9, 103.	11.1	57

#	Article	IF	CITATIONS
73	Spodoptera frugiperda Caterpillars Suppress Herbivore-Induced Volatile Emissions in Maize. Journal of Chemical Ecology, 2020, 46, 344-360.	1.8	57
74	Soil abiotic factors influence interactions between belowground herbivores and plant roots. Journal of Experimental Botany, 2013, 64, 1295-1303.	4.8	56
75	Integration of two herbivoreâ€induced plant volatiles results in synergistic effects on plant defence and resistance. Plant, Cell and Environment, 2019, 42, 959-971.	5.7	56
76	Withinâ€plant distribution of 1,4â€benzoxazinâ€3â€ones contributes to herbivore niche differentiation in maize. Plant, Cell and Environment, 2015, 38, 1081-1093.	5.7	55
77	The broadâ€leaf herbicide 2,4â€dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp. New Phytologist, 2012, 194, 498-510.	7.3	54
78	Plant defense resistance in natural enemies of a specialist insect herbivore. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23174-23181.	7.1	53
79	Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum,) Tj ETQq1 1 0.7843	314 rgBT /0 6.0	Overlock 10
80	Root volatiles in plant–plant interactions II: Root volatiles alter root chemistry and plant–herbivore interactions of neighbouring plants. Plant, Cell and Environment, 2019, 42, 1964-1973.	5.7	51
81	Benefits of jasmonate-dependent defenses against vertebrate herbivores in nature. ELife, 2016, 5, .	6.0	48
82	The Role of Plant Primary and Secondary Metabolites in Root-Herbivore Behaviour, Nutrition and Physiology. Advances in Insect Physiology, 2013, 45, 53-95.	2.7	44
83	A physiological and behavioral mechanism for leaf-herbivore induced systemic root resistance. Plant Physiology, 2015, 169, pp.00759.2015.	4.8	44
84	Metabolomics in plant–herbivore interactions: challenges and applications. Entomologia Experimentalis Et Applicata, 2015, 157, 18-29.	1.4	41
85	Maize Domestication and Anti-Herbivore Defences: Leaf-Specific Dynamics during Early Ontogeny of Maize and Its Wild Ancestors. PLoS ONE, 2015, 10, e0135722.	2.5	41
86	Can Herbivore-Induced Volatiles Protect Plants by Increasing the Herbivores' Susceptibility to Natural Pathogens?. Applied and Environmental Microbiology, 2019, 85, .	3.1	40
87	Salicylic Acid, a Plant Defense Hormone, Is Specifically Secreted by a Molluscan Herbivore. PLoS ONE, 2014, 9, e86500.	2.5	38
88	A <i>Nicotiana attenuata</i> cell wall invertase inhibitor (Na <scp>CWII</scp>) reduces growth and increases secondary metabolite biosynthesis in herbivoreâ€attacked plants. New Phytologist, 2015, 208, 519-530.	7.3	38
89	Belowground ABA boosts aboveground production of DIMBOA and primes induction of chlorogenic acid in maize. Plant Signaling and Behavior, 2009, 4, 639-641.	2.4	37
90	Direct and Indirect Plant Defenses are not Suppressed by Endosymbionts of a Specialist Root Herbivore. Journal of Chemical Ecology, 2013, 39, 507-515.	1.8	36

#	Article	IF	CITATIONS
91	Family Business: Multiple Members of Major Phytohormone Classes Orchestrate Plant Stress Responses. Chemistry - A European Journal, 2010, 16, 10280-10289.	3.3	35
92	Carbon-11 Reveals Opposing Roles of Auxin and Salicylic Acid in Regulating Leaf Physiology, Leaf Metabolism, and Resource Allocation Patterns that Impact Root Growth in Zea mays. Journal of Plant Growth Regulation, 2014, 33, 328-339.	5.1	34
93	A mechanism for sequence specificity in plantâ€mediated interactions between herbivores. New Phytologist, 2017, 214, 169-179.	7.3	34
94	Induction of defense in cereals by 4-fluorophenoxyacetic acid suppresses insect pest populations and increases crop yields in the field. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12017-12028.	7.1	33
95	Role of two UDP-Glycosyltransferases from the L group of arabidopsis in resistance against pseudomonas syringae. European Journal of Plant Pathology, 2014, 139, 707-720.	1.7	32
96	The Fall Armyworm Spodoptera frugiperda Utilizes Specific UDP-Glycosyltransferases to Inactivate Maize Defensive Benzoxazinoids. Frontiers in Physiology, 2020, 11, 604754.	2.8	29
97	Plant volatiles as regulators of plant defense and herbivore immunity: molecular mechanisms and unanswered questions. Current Opinion in Insect Science, 2021, 44, 82-88.	4.4	29
98	Aboveground herbivory induced jasmonates disproportionately reduce plant reproductive potential by facilitating root nematode infestation. Plant, Cell and Environment, 2018, 41, 797-808.	5.7	27
99	Engineering bacterial symbionts of nematodes improves their biocontrol potential to counter the western corn rootworm. Nature Biotechnology, 2020, 38, 600-608.	17.5	27
100	Insect-induced gene expression at the core of volatile terpene release in <i>Medicago truncatula</i> . Plant Signaling and Behavior, 2009, 4, 636-638.	2.4	26
101	A below-ground herbivore shapes root defensive chemistry in natural plant populations. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160285.	2.6	26
102	Neighbourhood effects determine plant–herbivore interactions belowâ€ground. Journal of Ecology, 2018, 106, 347-356.	4.0	25
103	Dynamic Precision Phenotyping Reveals Mechanism of Crop Tolerance to Root Herbivory. Plant Physiology, 2016, 172, pp.00735.2016.	4.8	23
104	Plant defense strategies against attack by multiple herbivores. Trends in Plant Science, 2022, 27, 528-535.	8.8	23
105	A Herbivore Tag-and-Trace System Reveals Contact- and Density-Dependent Repellence of a Root Toxin. Journal of Chemical Ecology, 2017, 43, 295-306.	1.8	22
106	Soil chemistry determines whether defensive plant secondary metabolites promote or suppress herbivore growth. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	22
107	Plant strengtheners enhance parasitoid attraction to herbivoreâ€damaged cotton via qualitative and quantitative changes in induced volatiles. Pest Management Science, 2015, 71, 686-693.	3.4	20
108	Entomopathogenic nematodes from Mexico that can overcome the resistance mechanisms of the western corn rootworm. Scientific Reports, 2020, 10, 8257.	3.3	20

#	Article	IF	CITATIONS
109	Climate warming can reduce biocontrol efficacy and promote plant invasion due to both genetic and transient metabolomic changes. Ecology Letters, 2022, 25, 1387-1400.	6.4	19
110	Role of Methyl Salicylate on Oviposition Deterrence in Arabidopsis thaliana. Journal of Chemical Ecology, 2014, 40, 754-759.	1.8	16
111	The plant metabolome guides fitness-relevant foraging decisions of a specialist herbivore. PLoS Biology, 2021, 19, e3001114.	5.6	15
112	Speciesâ€specific regulation of herbivoryâ€induced defoliation tolerance is associated with jasmonate inducibility. Ecology and Evolution, 2017, 7, 3703-3712.	1.9	14
113	Impact of Seasonal and Temperature-Dependent Variation in Root Defense Metabolites on Herbivore Preference in Taraxacum officinale. Journal of Chemical Ecology, 2020, 46, 63-75.	1.8	14
114	Western Corn Rootworm, Plant and Microbe Interactions: A Review and Prospects for New Management Tools. Insects, 2021, 12, 171.	2.2	14
115	Rhizobium Symbiotic Capacity Shapes Root-Associated Microbiomes in Soybean. Frontiers in Microbiology, 2021, 12, 709012.	3.5	14
116	Distinct defense strategies allow different grassland species to cope with root herbivore attack. Oecologia, 2019, 191, 127-139.	2.0	13
117	Suppression of a leucineâ€rich repeat receptorâ€like kinase enhances host plant resistance to a specialist herbivore. Plant, Cell and Environment, 2020, 43, 2571-2585.	5.7	13
118	Influence of drought on plant performance through changes in belowground tritrophic interactions. Ecology and Evolution, 2018, 8, 6756-6765.	1.9	12
119	Heritable variation in root secondary metabolites is associated with recent climate. Journal of Ecology, 2020, 108, 2611-2624.	4.0	12
120	Induction of root-resistance by leaf-herbivory follows a vertical gradient. Journal of Plant Interactions, 2011, 6, 133-136.	2.1	11
121	Identification of Photorhabdus symbionts by MALDI-TOF MS. Microbiology (United Kingdom), 2020, 166, 522-530.	1.8	11
122	A conserved pattern in plantâ€mediated interactions between herbivores. Ecology and Evolution, 2016, 6, 1032-1040.	1.9	10
123	Plant Biology: Evolution of Volatile-Mediated Plant–Plant Interactions. Current Biology, 2019, 29, R873-R875.	3.9	10
124	Plant-associated CO2 mediates long-distance host location and foraging behaviour of a root herbivore. ELife, 2021, 10, .	6.0	10
125	Predator-induced maternal effects determine adaptive antipredator behaviors via egg composition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
126	Leafminer attack accelerates the development of soilâ€dwelling conspecific pupae via plantâ€mediated changes in belowground volatiles. New Phytologist, 2022, 234, 280-294.	7.3	9

MATTHIAS ERB

#	Article	IF	CITATIONS
127	Localized micronutrient patches induce lateral root foraging and chemotropism in <i>Nicotiana attenuata</i> . Journal of Integrative Plant Biology, 2017, 59, 759-771.	8.5	8
128	Using plant chemistry to improve interactions between plants, herbivores and their natural enemies: challenges and opportunities. Current Opinion in Biotechnology, 2021, 70, 262-265.	6.6	8
129	Soil composition and plant genotype determine benzoxazinoidâ€mediated plant–soil feedbacks in cereals. Plant, Cell and Environment, 2021, 44, 3732-3744.	5.7	8
130	A beta-glucosidase of an insect herbivore determines both toxicity and deterrence of a dandelion defense metabolite. ELife, 2021, 10, .	6.0	8
131	The Role of Roots in Plant Defence. , 2012, , 291-309.		7
132	Adapted dandelions trade dispersal for germination upon root herbivore attack. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192930.	2.6	7
133	Speciesâ€specific plantâ€mediated effects between herbivores converge at high damage intensity. Ecology, 2022, 103, e3647.	3.2	7
134	Two enzymes responsible for the formation of herbivoreâ€induced volatiles of maize, the methyltransferase AAMT1 and the terpene synthase TPS23, are regulated by a similar signal transduction pathway. Entomologia Experimentalis Et Applicata, 2012, 144, 86-92.	1.4	6
135	Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its Enemies. Journal of Chemical Ecology, 2021, 47, 889-906.	1.8	6
136	Plant chemistry and food web health. New Phytologist, 2021, 231, 957-962.	7.3	4
137	Adaptations and responses of the common dandelion to low atmospheric pressure in highâ€altitude environments. Journal of Ecology, 2021, 109, 3487-3501.	4.0	3
138	Search for Low-Molecular-Weight Biomarkers in Plant Tissues and Seeds Using Metabolomics: Tools, Strategies, and Applications. , 2012, , 305-341.		0
139	The Inverted Phantom Giant. Journal of Chemical Ecology, 2014, 40, 417-417.	1.8	0
140	Impulse Lecture How specialized metabolites mediate interactions between plants and other organisms. Planta Medica, 2021, 87, .	1.3	0