Athanasios Dalakouras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4524271/publications.pdf

Version: 2024-02-01

25 papers 870 citations

16 h-index 610901 24 g-index

27 all docs

27 docs citations

27 times ranked 742 citing authors

#	Article	IF	CITATIONS
1	Genetically Modified Organism-Free RNA Interference: Exogenous Application of RNA Molecules in Plants. Plant Physiology, 2020, 182, 38-50.	4.8	163
2	Induction of Silencing in Plants by High-Pressure Spraying of In vitro-Synthesized Small RNAs. Frontiers in Plant Science, 2016, 07, 1327.	3.6	133
3	Delivery of Hairpin RNAs and Small RNAs Into Woody and Herbaceous Plants by Trunk Injection and Petiole Absorption. Frontiers in Plant Science, 2018, 9, 1253.	3.6	98
4	Revisiting RNA-directed DNA methylation. RNA Biology, 2013, 10, 453-455.	3.1	49
5	An endogene-resembling transgene is resistant to DNA methylation and systemic silencing. RNA Biology, 2014, 11, 934-941.	3.1	42
6	A hairpin RNA construct residing in an intron efficiently triggered RNAâ€directed DNA methylation in tobacco. Plant Journal, 2009, 60, 840-851.	5.7	34
7	Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits. Horticulture Research, 2019, 6, 94.	6.3	34
8	Epigenetic approaches to crop breeding: current status and perspectives. Journal of Experimental Botany, 2021, 72, 5356-5371.	4.8	32
9	Transgenerational maintenance of transgene body CG but not CHG and CHH methylation. Epigenetics, 2012, 7, 1071-1078.	2.7	31
10	An endogeneâ€resembling transgene delays the onset of silencing and limits siRNA accumulation. FEBS Letters, 2013, 587, 706-710.	2.8	30
11	Hairpin transcription does not necessarily lead to efficient triggering of the RNAi pathway. Transgenic Research, 2011, 20, 293-304.	2.4	24
12	Engineering Viroid Resistance. Viruses, 2015, 7, 634-646.	3.3	23
13	Functional Analysis of Cotton Leaf Curl Kokhran Virus/Cotton Leaf Curl Multan Betasatellite RNA Silencing Suppressors. Biology, 2015, 4, 697-714.	2.8	20
14	<scp>RNA</scp> â€directed <scp>DNA</scp> methylation efficiency depends on trigger and target sequence identity. Plant Journal, 2016, 87, 202-214.	5.7	20
15	Transient expression of intron-containing transgenes generates non-spliced aberrant pre-mRNAs that are processed into siRNAs. Planta, 2019, 249, 457-468.	3.2	20
16	Epigenetic Modifications: An Unexplored Facet of Exogenous RNA Application in Plants. Plants, 2020, 9, 673.	3.5	18
17	Replicating Potato spindle tuber viroid mediates <i>de novo</i> methylation of an intronic viroid sequence but no cleavage of the corresponding pre-mRNA. RNA Biology, 2015, 12, 268-275.	3.1	16
18	Viroid-induced DNA methylation in plants. Biomolecular Concepts, 2013, 4, 557-565.	2.2	15

#	Article	IF	CITATIONS
19	Induction of Promoter DNA Methylation Upon High-Pressure Spraying of Double-Stranded RNA in Plants. Agronomy, 2021, 11, 789.	3.0	15
20	Viroids as a Tool to Study RNA-Directed DNA Methylation in Plants. Cells, 2021, 10, 1187.	4.1	15
21	Diverse spontaneous silencing of a transgene among two Nicotiana species. Planta, 2011, 234, 699-707.	3.2	13
22	A chimeric satellite transgene sequence is inefficiently targeted by viroid-induced DNA methylation in tobacco. Plant Molecular Biology, 2010, 73, 439-447.	3.9	11
23	Highâ€pressure sprayed siRNAs influence the efficiency but not the profile of transitive silencing. Plant Journal, 2022, 109, 1199-1212.	5.7	7
24	Viroids and RNA Silencing. , 2017, , 115-124.		4
25	Biological and Molecular Control Tools in Plant Defense. Progress in Biological Control, 2020, , 3-43.	0.5	2