
## Massimiliano Delferro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4522815/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Multinuclear Olefin Polymerization Catalysts. Chemical Reviews, 2011, 111, 2450-2485.                                                                                                                     | 47.7 | 524       |
| 2  | Catalytic Applications of Vanadium: A Mechanistic Perspective. Chemical Reviews, 2019, 119, 2128-2191.                                                                                                    | 47.7 | 323       |
| 3  | Upcycling Single-Use Polyethylene into High-Quality Liquid Products. ACS Central Science, 2019, 5, 1795-1803.                                                                                             | 11.3 | 283       |
| 4  | Catalytic upcycling of high-density polyethylene via a processive mechanism. Nature Catalysis, 2020, 3,<br>893-901.                                                                                       | 34.4 | 262       |
| 5  | Multinuclear Group 4 Catalysis: Olefin Polymerization Pathways Modified by Strong Metal–Metal<br>Cooperative Effects. Accounts of Chemical Research, 2014, 47, 2545-2557.                                 | 15.6 | 210       |
| 6  | Atom-efficient regioselective 1,2-dearomatization of functionalized pyridines by an earth-abundant organolanthanide catalyst. Nature Chemistry, 2014, 6, 1100-1107.                                       | 13.6 | 184       |
| 7  | Supported Single-Site Organometallic Catalysts for the Synthesis of High-Performance Polyolefins.<br>Catalysis Letters, 2015, 145, 3-14.                                                                  | 2.6  | 159       |
| 8  | Catalytic chemoselective functionalization of methane in a metalâ^'organic framework. Nature<br>Catalysis, 2018, 1, 356-362.                                                                              | 34.4 | 153       |
| 9  | MOF-enabled confinement and related effects for chemical catalyst presentation and utilization.<br>Chemical Society Reviews, 2022, 51, 1045-1097.                                                         | 38.1 | 148       |
| 10 | Gas-Phase Dimerization of Ethylene under Mild Conditions Catalyzed by MOF Materials Containing<br>(bpy)Ni <sup>II</sup> Complexes. ACS Catalysis, 2015, 5, 6713-6718.                                     | 11.2 | 127       |
| 11 | Suppression of β-Hydride Chain Transfer in Nickel(II)-Catalyzed Ethylene Polymerization via Weak<br>Fluorocarbon Ligand–Product Interactions. Organometallics, 2012, 31, 3773-3789.                       | 2.3  | 124       |
| 12 | Rapid, Mild, and Selective Ketone and Aldehyde Hydroboration/Reduction Mediated by a Simple<br>Lanthanide Catalyst. ACS Catalysis, 2017, 7, 1244-1247.                                                    | 11.2 | 115       |
| 13 | Ligand Steric and Fluoroalkyl Substituent Effects on Enchainment Cooperativity and Stability in<br>Bimetallic Nickel(II) Polymerization Catalysts. Chemistry - A European Journal, 2012, 18, 10715-10732. | 3.3  | 110       |
| 14 | Neutral Bimetallic Nickel(II) Phenoxyiminato Catalysts for Highly Branched Polyethylenes and Ethyleneâ^'Norbornene Copolymerizations. Organometallics, 2008, 27, 2166-2168.                               | 2.3  | 109       |
| 15 | Bimetallic Effects for Enhanced Polar Comonomer Enchainment Selectivity in Catalytic Ethylene<br>Polymerization. Journal of the American Chemical Society, 2009, 131, 5902-5919.                          | 13.7 | 109       |
| 16 | Very Large Cooperative Effects in Heterobimetallic Titanium-Chromium Catalysts for Ethylene<br>Polymerization/Copolymerization. Journal of the American Chemical Society, 2014, 136, 10460-10469.         | 13.7 | 105       |
| 17 | Single-Site Organozirconium Catalyst Embedded in a Metal–Organic Framework. Journal of the<br>American Chemical Society, 2015, 137, 15680-15683.                                                          | 13.7 | 103       |
| 18 | Nontraditional Catalyst Supports in Surface Organometallic Chemistry. ACS Catalysis, 2020, 10,<br>11822-11840.                                                                                            | 11.2 | 94        |

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Synthesis, Characterization, and Heterobimetallic Cooperation in a Titanium–Chromium Catalyst for<br>Highly Branched Polyethylenes. Journal of the American Chemical Society, 2013, 135, 8830-8833.                                                          | 13.7 | 91        |
| 20 | Ni(II) Phenoxyiminato Olefin Polymerization Catalysis: Striking Coordinative Modulation of<br>Hyperbranched Polymer Microstructure and Stability by a Proximate Sulfonyl Group. ACS Catalysis,<br>2014, 4, 999-1003.                                         | 11.2 | 91        |
| 21 | A molecular cross-linking approach for hybrid metal oxides. Nature Materials, 2018, 17, 341-348.                                                                                                                                                             | 27.5 | 90        |
| 22 | Well-Defined Rhodium–Gallium Catalytic Sites in a Metal–Organic Framework: Promoter-Controlled<br>Selectivity in Alkyne Semihydrogenation to <i>E</i> -Alkenes. Journal of the American Chemical Society,<br>2018, 140, 15309-15318.                         | 13.7 | 88        |
| 23 | Temperatureâ€Ðependent Fluorescence of Cu <sub>5</sub> Metal Clusters: A Molecular Thermometer.<br>Angewandte Chemie - International Edition, 2012, 51, 9662-9665.                                                                                           | 13.8 | 87        |
| 24 | Surface structural-chemical characterization of a single-site d <sup>0</sup> heterogeneous arene<br>hydrogenation catalyst having 100% active sites. Proceedings of the National Academy of Sciences of<br>the United States of America, 2013, 110, 413-418. | 7.1  | 87        |
| 25 | Enhanced Activity of Heterogeneous Pd(II) Catalysts on Acid-Functionalized Metal–Organic<br>Frameworks. ACS Catalysis, 2019, 9, 5383-5390.                                                                                                                   | 11.2 | 77        |
| 26 | Benzene Selectivity in Competitive Arene Hydrogenation: Effects of Single-Site Catalyst··Acidic Oxide<br>Surface Binding Geometry. Journal of the American Chemical Society, 2015, 137, 6770-6780.                                                           | 13.7 | 76        |
| 27 | Atomically Precise Strategy to a PtZn Alloy Nanocluster Catalyst for the Deep Dehydrogenation of <i>n</i> -Butane to 1,3-Butadiene. ACS Catalysis, 2018, 8, 10058-10063.                                                                                     | 11.2 | 67        |
| 28 | Synergistic effects in Fe nanoparticles doped with ppm levels of (Pd + Ni). A new catalyst for sustainable nitro group reductions. Green Chemistry, 2018, 20, 130-135.                                                                                       | 9.0  | 63        |
| 29 | Size-Controlled Nanoparticles Embedded in a Mesoporous Architecture Leading to Efficient and<br>Selective Hydrogenolysis of Polyolefins. Journal of the American Chemical Society, 2022, 144, 5323-5334.                                                     | 13.7 | 60        |
| 30 | Hydrolytic cleavage of both CS2 carbon–sulfur bonds by multinuclear Pd(II) complexes at room<br>temperature. Nature Chemistry, 2017, 9, 188-193.                                                                                                             | 13.6 | 57        |
| 31 | Chemoselective Hydrogenation with Supported Organoplatinum(IV) Catalyst on Zn(II)-Modified Silica.<br>Journal of the American Chemical Society, 2018, 140, 3940-3951.                                                                                        | 13.7 | 56        |
| 32 | Singleâ€Face/Allâ€ <i>cis</i> Arene Hydrogenation by a Supported Singleâ€Site d <sup>0</sup><br>Organozirconium Catalyst. Angewandte Chemie - International Edition, 2016, 55, 5263-5267.                                                                    | 13.8 | 54        |
| 33 | Alkyl-Cyclens as Effective Sulfur- and Phosphorus-Free Friction Modifiers for Boundary Lubrication.<br>ACS Applied Materials & Interfaces, 2017, 9, 9118-9125.                                                                                               | 8.0  | 54        |
| 34 | Reactivity of a Carbon-Supported Single-Site Molybdenum Dioxo Catalyst for Biodiesel Synthesis. ACS<br>Catalysis, 2016, 6, 6762-6769.                                                                                                                        | 11.2 | 53        |
| 35 | Effect of Redox "Non-Innocent―Linker on the Catalytic Activity of Copper-Catecholate-Decorated<br>Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 635-641.                                                                           | 8.0  | 52        |
| 36 | Metal–Organic Framework Nodes as a Supporting Platform for Tailoring the Activity of Metal<br>Catalysts. ACS Catalysis, 2020, 10, 11556-11566.                                                                                                               | 11.2 | 52        |

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Supported Single-Site Ti(IV) on a Metal–Organic Framework for the Hydroboration of Carbonyl<br>Compounds. Organometallics, 2017, 36, 3921-3930.                                                         | 2.3  | 50        |
| 38 | Catalytic carbon-carbon bond cleavage and carbon-element bond formation give new life for polyolefins as biodegradable surfactants. CheM, 2021, 7, 1347-1362.                                           | 11.7 | 50        |
| 39 | Self-assembly of polyoxoselenitopalladate nanostars [Pd15(μ3-SeO3)10(μ3-O)10Na]9â^ and their supramolecular pairing in the solid state. Dalton Transactions, 2010, 39, 4479.                            | 3.3  | 46        |
| 40 | Volatile Hexavalent Oxo-amidinate Complexes: Molybdenum and Tungsten Precursors for Atomic Layer<br>Deposition. Chemistry of Materials, 2016, 28, 1907-1919.                                            | 6.7  | 45        |
| 41 | Pyridylamido Bi-Hafnium Olefin Polymerization Catalysis: Conformationally Supported Hf···Hf<br>Enchainment Cooperativity. ACS Catalysis, 2015, 5, 5272-5282.                                            | 11.2 | 43        |
| 42 | Zirconium Modification Promotes Catalytic Activity of a Single-Site Cobalt Heterogeneous Catalyst<br>for Propane Dehydrogenation. ACS Omega, 2018, 3, 11117-11127.                                      | 3.5  | 43        |
| 43 | Ethylene Polymerization Characteristics of an Electron-Deficient Nickel(II) Phenoxyiminato Catalyst<br>Modulated by Non-Innocent Intramolecular Hydrogen Bonding. Organometallics, 2010, 29, 5040-5049. | 2.3  | 40        |
| 44 | Benzo[ <i>d</i> ][1,2,3]thiadiazole (isoBT): Synthesis, Structural Analysis, and Implementation in Semiconducting Polymers. Chemistry of Materials, 2016, 28, 6390-6400.                                | 6.7  | 40        |
| 45 | Electrophilic Organoiridium(III) Pincer Complexes on Sulfated Zirconia for Hydrocarbon Activation and Functionalization. Journal of the American Chemical Society, 2019, 141, 6325-6337.                | 13.7 | 38        |
| 46 | Stabilizing Single-Atom and Small-Domain Platinum via Combining Organometallic Chemisorption and Atomic Layer Deposition. Organometallics, 2017, 36, 818-828.                                           | 2.3  | 34        |
| 47 | Evidence for Redox Mechanisms in Organometallic Chemisorption and Reactivity on Sulfated Metal Oxides. Journal of the American Chemical Society, 2018, 140, 6308-6316.                                  | 13.7 | 34        |
| 48 | Distinctive Stereochemically Linked Cooperative Effects in Bimetallic Titanium Olefin Polymerization Catalysts. Organometallics, 2017, 36, 4403-4421.                                                   | 2.3  | 30        |
| 49 | Surface Organometallic Chemistry of Supported Iridium(III) as a Probe for Organotransition<br>Metal–Support Interactions in C–H Activation. ACS Catalysis, 2018, 8, 5363-5373.                          | 11.2 | 29        |
| 50 | Transient Catenation in a Zirconium-Based Metal–Organic Framework and Its Effect on Mechanical<br>Stability and Sorption Properties. Journal of the American Chemical Society, 2021, 143, 1503-1512.    | 13.7 | 28        |
| 51 | Investigations into Apopinene as a Biorenewable Monomer for Ring-Opening Metathesis<br>Polymerization. ACS Sustainable Chemistry and Engineering, 2015, 3, 1278-1281.                                   | 6.7  | 26        |
| 52 | Isolated, well-defined organovanadium( <scp>iii</scp> ) on silica: single-site catalyst for hydrogenation of alkenes and alkynes. Chemical Communications, 2017, 53, 7325-7328.                         | 4.1  | 26        |
| 53 | Deoxydehydration of Biomass-Derived Polyols with a Reusable Unsupported Rhenium Nanoparticles<br>Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 11438-11447.                             | 6.7  | 26        |
| 54 | Exploring the Alcohol Stability of Bis(phosphine) Cobalt Dialkyl Precatalysts in Asymmetric Alkene<br>Hydrogenation. Organometallics, 2019, 38, 149-156.                                                | 2.3  | 26        |

MASSIMILIANO DELFERRO

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Supported Aluminum Catalysts for Olefin Hydrogenation. ACS Catalysis, 2017, 7, 689-694.                                                                                                             | 11.2 | 25        |
| 56 | Synthetic Lubricants Derived from Plastic Waste and their Tribological Performance. ChemSusChem, 2021, 14, 4181-4189.                                                                               | 6.8  | 25        |
| 57 | Ligand-Unsymmetrical Phenoxyiminato Dinickel Catalyst for High Molecular Weight Long-Chain<br>Branched Polyethylenes. ACS Macro Letters, 2015, 4, 1297-1301.                                        | 4.8  | 24        |
| 58 | Iridium-Doped Nanosized Zn–Al Layered Double Hydroxides as Efficient Water Oxidation Catalysts. ACS<br>Applied Materials & Interfaces, 2020, 12, 32736-32745.                                       | 8.0  | 24        |
| 59 | Efficient catalytic greenhouse gas-free hydrogen and aldehyde formation from aqueous alcohol solutions. Energy and Environmental Science, 2017, 10, 1558-1562.                                      | 30.8 | 23        |
| 60 | Metal and Counteranion Nuclearity Effects in Organoscandium-Catalyzed Isoprene Polymerization and<br>Copolymerization. ACS Catalysis, 2017, 7, 5214-5219.                                           | 11.2 | 23        |
| 61 | Carbostannolysis Mediated by Bis(pentamethylcyclopentadienyl)lanthanide Catalysts. Utility in Accessing Organotin Synthons. Organometallics, 2013, 32, 1317-1327.                                   | 2.3  | 22        |
| 62 | Direct Synthesis of Low-Coordinate Pd Catalysts Supported on SiO <sub>2</sub> via Surface<br>Organometallic Chemistry. ACS Catalysis, 2016, 6, 8380-8388.                                           | 11.2 | 21        |
| 63 | Cationic Pyridylamido Adsorbate on BrÃ,nsted Acidic Sulfated Zirconia: A Molecular Supported<br>Organohafnium Catalyst for Olefin Homo- and Co-Polymerization. ACS Catalysis, 2018, 8, 4893-4901.   | 11.2 | 21        |
| 64 | Role of Boron in Enhancing the Catalytic Performance of Supported Platinum Catalysts for the Nonoxidative Dehydrogenation of <i>n</i>                                                               | 11.2 | 21        |
| 65 | Mechanistic Insights into C–H Borylation of Arenes with Organoiridium Catalysts Embedded in a<br>Microporous Metal–Organic Framework. Organometallics, 2020, 39, 1123-1133.                         | 2.3  | 20        |
| 66 | Scalable Synthesis of Pt/SrTiO <sub>3</sub> Hydrogenolysis Catalysts in Pursuit of<br>Manufacturing-Relevant Waste Plastic Solutions. ACS Applied Materials & Interfaces, 2021, 13,<br>58691-58700. | 8.0  | 19        |
| 67 | Oil-Soluble Silver–Organic Molecule for in Situ Deposition of Lubricious Metallic Silver at High<br>Temperatures. ACS Applied Materials & Interfaces, 2016, 8, 13637-13645.                         | 8.0  | 18        |
| 68 | Silver-Organic Oil Additive for High-Temperature Applications. Tribology Letters, 2013, 52, 261-269.                                                                                                | 2.6  | 17        |
| 69 | Singleâ€Face/Allâ€ <i>cis</i> Arene Hydrogenation by a Supported Singleâ€Site d <sup>0</sup><br>Organozirconium Catalyst. Angewandte Chemie, 2016, 128, 5349-5353.                                  | 2.0  | 17        |
| 70 | Second-generation hexavalent molybdenum oxo-amidinate precursors for atomic layer deposition.<br>Dalton Transactions, 2017, 46, 1172-1178.                                                          | 3.3  | 17        |
| 71 | Synthesis of Supported Pd <sup>0</sup> Nanoparticles from a Single-Site Pd <sup>2+</sup> Surface<br>Complex by Alkene Reduction. Chemistry of Materials, 2018, 30, 1032-1044.                       | 6.7  | 17        |
| 72 | Mechanistic Aspects of a Surface Organovanadium(III) Catalyst for Hydrocarbon Hydrogenation and<br>Dehydrogenation. ACS Catalysis, 2019, 9, 11055-11066.                                            | 11.2 | 17        |

| #  | Article                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Synthesis and Characterization of Silver(I) Pyrazolylmethylpyridine Complexes and Their<br>Implementation as Metallic Silver Thin Film Precursors. Inorganic Chemistry, 2014, 53, 4629-4638.                                                                                            | 4.0  | 16        |
| 74 | How Close Is Too Close? Polymerization Behavior and Monomer-Dependent Reorganization of a Bimetallic Salphen Organotitanium Catalyst. Organometallics, 2018, 37, 2429-2436.                                                                                                             | 2.3  | 16        |
| 75 | Computational Investigation of the Role of Active Site Heterogeneity for a Supported Organovanadium(III) Hydrogenation Catalyst. ACS Catalysis, 2021, 11, 7257-7269.                                                                                                                    | 11.2 | 16        |
| 76 | Isomerization and Selective Hydrogenation of Propyne: Screening of Metal–Organic Frameworks<br>Modified by Atomic Layer Deposition. Journal of the American Chemical Society, 2020, 142, 20380-20389.                                                                                   | 13.7 | 15        |
| 77 | Grafted nickel-promoter catalysts for dry reforming of methane identified through high-throughput experimentation. Applied Catalysis A: General, 2022, 629, 118379.                                                                                                                     | 4.3  | 15        |
| 78 | High-Performance Heterocyclic Friction Modifiers for Boundary Lubrication. Tribology Letters, 2018, 66, 1.                                                                                                                                                                              | 2.6  | 14        |
| 79 | Influence of spin state and electron configuration on the active site and mechanism for catalytic hydrogenation on metal cation catalysts supported on NU-1000: insights from experiments and microkinetic modeling. Catalysis Science and Technology, 2020, 10, 3594-3602.             | 4.1  | 14        |
| 80 | Catalytic CO Oxidation on MgAl <sub>2</sub> O <sub>4</sub> -Supported Iridium Single Atoms: Ligand Configuration and Site Geometry. Journal of Physical Chemistry C, 2021, 125, 11380-11390.                                                                                            | 3.1  | 13        |
| 81 | Silver(I) Bis(pyrazolyl)methane Complexes and Their Implementation as Precursors for Metallic Silver<br>Deposition. European Journal of Inorganic Chemistry, 2016, 2016, 2626-2633.                                                                                                     | 2.0  | 12        |
| 82 | A Study on the Coordinative Versatility of the Zwitterionic S,N,S Ligand EtNHC(S)ÂPh2P=NPPh2C(S)NEt<br>in Its Anionic, Neutral and Cationic Forms – Determination of Absolute pKa Values in CH2Cl2 of RhI<br>Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 2302-2312. | 2.0  | 11        |
| 83 | Synthesis, structural characterisation and solution chemistry of ruthenium(III) triazole-thiadiazine complexes. Dalton Transactions, 2009, , 3766.                                                                                                                                      | 3.3  | 11        |
| 84 | Development of activity–descriptor relationships for supported metal ion hydrogenation catalysts<br>on silica. Polyhedron, 2018, 152, 73-83.                                                                                                                                            | 2.2  | 11        |
| 85 | Revealing the Configuration and Conformation of Surface Organometallic Catalysts with DNP-Enhanced NMR. Journal of Physical Chemistry C, 2021, 125, 13433-13442.                                                                                                                        | 3.1  | 11        |
| 86 | Nuclearity effects in supported, single-site Fe( <scp>ii</scp> ) hydrogenation pre-catalysts. Dalton<br>Transactions, 2018, 47, 10842-10846.                                                                                                                                            | 3.3  | 9         |
| 87 | A Neutrally Charged Trimethylmanganese(III) Complex: Synthesis, Characterization, and Disproportionation Chemistry. Organometallics, 2016, 35, 2683-2688.                                                                                                                               | 2.3  | 8         |
| 88 | Activation of Low-Valent, Multiply M–M Bonded Group VI Dimers toward Catalytic Olefin Metathesis<br>via Surface Organometallic Chemistry. Organometallics, 2020, 39, 1035-1045.                                                                                                         | 2.3  | 8         |
| 89 | Oxidative Addition of lodomethane to Charge-Tuned Rhodium(I) Complexes. Organometallics, 2009, 28, 2062-2071.                                                                                                                                                                           | 2.3  | 7         |
| 90 | Atomic layer deposition of HfO2 films using carbon-free tetrakis(tetrahydroborato)hafnium and water. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .                                                                                                | 2.1  | 7         |

| #   | Article                                                                                                                                                                                                                                                         | IF                 | CITATIONS         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|
| 91  | Integrated Experimental and Computational K-Edge X-ray Absorption Near-Edge Structure Analysis of<br>Vanadium Catalysts. Journal of Physical Chemistry C, 2022, 126, 11949-11962.                                                                               | 3.1                | 7                 |
| 92  | Coordination properties of the multifunctional S,N,S zwitterionic ligand EtNHC(S)Ph2PNPPh2C(S)NEt.<br>Coordination Chemistry Reviews, 2010, 254, 753-764.                                                                                                       | 18.8               | 6                 |
| 93  | Electrochemical Investigation of Low-Valent Multiply M≡M Bonded Group VI Dimers: A Standard<br>Chemical Reduction Leads to an Unexpected Product. Organometallics, 2020, 39, 4430-4436.                                                                         | 2.3                | 6                 |
| 94  | Photocatalytic Transfer Hydrogenation in Water: Insight into Mechanism and Catalyst Speciation.<br>Organometallics, 2021, 40, 1482-1491.                                                                                                                        | 2.3                | 6                 |
| 95  | Ethylene polymerization with a crystallographically well-defined metal–organic framework<br>supported catalyst. Catalysis Science and Technology, 2022, 12, 1619-1627.                                                                                          | 4.1                | 6                 |
| 96  | Lithium-Ion Battery Materials as Tunable, "Redox Non-Innocent―Catalyst Supports. ACS Catalysis, 0, ,<br>7233-7242.                                                                                                                                              | 11.2               | 6                 |
| 97  | Reactivity of the zwitterionic ligand EtNHC(S)Ph2Pî€NPPh2C(S)NEt towards [Ru3(CO)12]. Sulfur<br>transfer and ligand fragmentation leading to the methideylamide [-N(Et)-CH(R)-] μ3-bridging moiety.<br>Dalton Transactions, 2009, , 544-549.                    | 3.3                | 5                 |
| 98  | Investigation of Shear-Thinning Behavior on Film Thickness and Friction Coefficient of<br>Polyalphaolefin Base Fluids With Varying Olefin Copolymer Content. Journal of Tribology, 2017, 139, .                                                                 | 1.9                | 5                 |
| 99  | Synthesis, Structural Characterization, and Magnetic Properties of the Heteroleptic Dinuclear Nickel<br>Selenite Complex [{Ni(TMEDA)SeO <sub>3</sub> } <sub>2</sub> ]. European Journal of Inorganic<br>Chemistry, 2011, 2011, 3327-3333.                       | 2.0                | 4                 |
| 100 | Phosphorusâ€Atom Transfer from Phosphaethynolate to an Alkylidyne. Angewandte Chemie -<br>International Edition, 2021, 60, 24411-24417.                                                                                                                         | 13.8               | 4                 |
| 101 | Structural motifs in heteroleptic copper and cadmium selenites. Inorganica Chimica Acta, 2018, 470, 206-212.                                                                                                                                                    | 2.4                | 3                 |
| 102 | Tetraaquabis{μ2-2,7-bis[(2,6-diisopropylphenyl)iminomethyl]naphthalene-1,8-diolato}di-μ3-hydroxido-di-μ2-h<br>Section E: Structure Reports Online, 2010, 66, m257-m257.                                                                                         | nydroxido-ł<br>0.2 | ois(trimethy<br>3 |
| 103 | Tale of Three Molecular Nitrides: Mononuclear Vanadium (V) and (IV) Nitrides As Well As a<br>Mixed-Valence Trivanadium Nitride Having a V <sub>3</sub> N <sub>4</sub> Double-Diamond Core.<br>Journal of the American Chemical Society, 2022, 144, 10201-10219. | 13.7               | 3                 |
| 104 | Promoter Effects on Catalyst Selectivity and Stability for Propylene Partial Oxidation to Acrolein.<br>Catalysis Letters, 2020, 150, 826-836.                                                                                                                   | 2.6                | 1                 |
| 105 | Pâ€Atom Transfer from Phosphaethynolate to an Alkylidyne Angewandte Chemie, 0, , .                                                                                                                                                                              | 2.0                | 1                 |
| 106 | Organometallic Chemistry at Various Length Scales: More Than Just Metal–Carbon Bonds Bring<br>Chemists Together. Organometallics, 2020, 39, 881-882.                                                                                                            | 2.3                | 0                 |
| 107 | Lubrication in Desert Environments: Oil-Soluble Organo-Silver Molecules Designed for In-Situ<br>Deposition of Metallic Silver at High Temperatures. , 2016, , .                                                                                                 |                    | 0                 |