Steven A Porcelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4522245/publications.pdf

Version: 2024-02-01

96 papers 5,362 citations

36 h-index 71 g-index

98 all docs 98 docs citations

98 times ranked 5441 citing authors

#	Article	IF	CITATIONS
1	Murine CD1d-Restricted T Cell Recognition of Cellular Lipids. Immunity, 2000, 12, 211-221.	14.3	445
2	Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of Â-galactosylceramides. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3383-3388.	7.1	308
3	Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. Journal of Clinical Investigation, 2011, 121, 1471-1483.	8.2	300
4	Mycobacterium tuberculosis nuoG Is a Virulence Gene That Inhibits Apoptosis of Infected Host Cells. PLoS Pathogens, 2007, 3, e110.	4.7	267
5	Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. Journal of Clinical Investigation, 2007, 117, 2279-2288.	8.2	259
6	A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nature Medicine, 2011, 17, 1261-1268.	30.7	192
7	A Subset of Liver NK T Cells Is Activated during Leishmania donovani Infection by CD1d-bound Lipophosphoglycan. Journal of Experimental Medicine, 2004, 200, 895-904.	8.5	191
8	Kinetics and Cellular Site of Glycolipid Loading Control the Outcome of Natural Killer T Cell Activation. Immunity, 2009, 30, 888-898.	14.3	159
9	Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nature Immunology, 2002, 3, 435-442.	14.5	146
10	Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47. Nature Microbiology, 2016, 1, 16133.	13.3	133
11	The diverse functions of CD1d-restricted NKT cells and their potential for immunotherapy. Immunology Letters, 2005, 100, 42-55.	2.5	119
12	Recognition of \hat{I}^2 -linked self glycolipids mediated by natural killer T cell antigen receptors. Nature Immunology, 2011, 12, 827-833.	14.5	111
13	Lipid and glycolipid antigens of CD1d-restricted natural killer T cells. Seminars in Immunology, 2010, 22, 68-78.	5.6	110
14	Mechanisms for Glycolipid Antigen-Driven Cytokine Polarization by $\hat{Vl\pm}14<$ i>ii> NKT Cells. Journal of Immunology, 2010, 184, 141-153.	0.8	108
15	A Molecular Basis for the Exquisite CD1d-Restricted Antigen Specificity and Functional Responses of Natural Killer T Cells. Immunity, 2011, 34, 327-339.	14.3	107
16	Enrichment of Human CD4+ $\hat{Vl}\pm 24/\hat{Vl}^2$ 11 Invariant NKT Cells in Intrahepatic Malignant Tumors. Journal of Immunology, 2009, 182, 5140-5151.	0.8	103
17	Invariant NKT Cells Biased for IL-5 Production Act as Crucial Regulators of Inflammation. Journal of Immunology, 2007, 179, 3452-3462.	0.8	98
18	Mycolic Acid Modification by the mmaA4 Gene of M. tuberculosis Modulates IL-12 Production. PLoS Pathogens, 2008, 4, e1000081.	4.7	92

#	Article	IF	Citations
19	Human Cd1b and Cd1c Isoforms Survey Different Intracellular Compartments for the Presentation of Microbial Lipid Antigens. Journal of Experimental Medicine, 2000, 192, 281-288.	8.5	90
20	The T cell antigen receptor expressed by VÂ14i NKT cells has a unique mode of glycosphingolipid antigen recognition. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12254-12259.	7.1	90
21	A Single Subset of Dendritic Cells Controls the Cytokine Bias of Natural Killer T Cell Responses to Diverse Glycolipid Antigens. Immunity, 2014, 40, 105-116.	14.3	90
22	Synthesis and Evaluation of Sphinganine Analogues of KRN7000 and OCH. Journal of Organic Chemistry, 2005, 70, 10260-10270.	3.2	87
23	Improved Outcomes in NOD Mice Treated with a Novel Th2 Cytokine-Biasing NKT Cell Activator. Journal of Immunology, 2007, 178, 1415-1425.	0.8	81
24	Incorporation of NKT Cell-Activating Glycolipids Enhances Immunogenicity and Vaccine Efficacy of <i>Mycobacterium bovis</i> Bacillus Calmette-Guelrin. Journal of Immunology, 2009, 183, 1644-1656.	0.8	74
25	Enhanced control of Mycobacterium tuberculosis extrapulmonary dissemination in mice by an arabinomannan-protein conjugate vaccine. PLoS Pathogens, 2017, 13, e1006250.	4.7	74
26	Optimizing NKT cell ligands as vaccineÂadjuvants. Immunotherapy, 2014, 6, 309-320.	2.0	73
27	Lysosomal recycling terminates CD1d-mediated presentation of short and polyunsaturated variants of the NKT cell lipid antigen αGalCer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10254-10259.	7.1	68
28	A review of the PD-1/PD-L1 checkpoint in bladder cancer: From mediator of immune escape to target for treatment 1 1MPS is an investor in and consultant for Urogen. SAP is consultant and advisor for Vaccinex. The remaining authors have nothing to disclose Urologic Oncology: Seminars and Original Investigations, 2017, 35, 14-20.	1.6	67
29	Production and characterization of monoclonal antibodies against complexes of the NKT cell ligand α-galactosylceramide bound to mouse CD1d. Journal of Immunological Methods, 2007, 323, 11-23.	1.4	65
30	Combined Natural Killer T-Cell–Based Immunotherapy Eradicates Established Tumors in Mice. Cancer Research, 2007, 67, 7495-7504.	0.9	64
31	Immunization of $\hat{Vl^3}2\hat{Vl'}2$ T cells programs sustained effector memory responses that control tuberculosis in nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6371-6378.	7.1	63
32	Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents. Clinical and Translational Immunology, 2016, 5, e69.	3.8	57
33	Targeting Mycobacterium tuberculosis Tumor Necrosis Factor Alpha-Downregulating Genes for the Development of Antituberculous Vaccines. MBio, 2016, 7, .	4.1	52
34	Expression of CD1d Molecules by Human Schwann Cells and Potential Interactions with Immunoregulatory Invariant NK T Cells. Journal of Immunology, 2006, 177, 5226-5235.	0.8	49
35	In vitro culture medium influences the vaccine efficacy of Mycobacterium bovis BCG. Vaccine, 2012, 30, 1038-1049.	3.8	44
36	Lysine Auxotrophy Combined with Deletion of the SecA2 Gene Results in a Safe and Highly Immunogenic Candidate Live Attenuated Vaccine for Tuberculosis. PLoS ONE, 2011, 6, e15857.	2.5	42

#	Article	IF	CITATIONS
37	Tuberculosis: unsealing the apoptotic envelope. Nature Immunology, 2008, 9, 1101-1102.	14.5	39
38	Glycolipids that Elicit IFN-Î ³ -Biased Responses from Natural Killer T Cells. Chemistry and Biology, 2011, 18, 1620-1630.	6.0	37
39	$\hat{V^2}$ 2 natural killer T cell antigen receptor-mediated recognition of CD1d-glycolipid antigen. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19007-19012.	7.1	36
40	Human CD1d knock-in mouse model demonstrates potent antitumor potential of human CD1d-restricted invariant natural killer T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2963-2968.	7.1	36
41	Human and Mouse Type I Natural Killer T Cell Antigen Receptors Exhibit Different Fine Specificities for CD1d-Antigen Complex. Journal of Biological Chemistry, 2012, 287, 39139-39148.	3.4	34
42	A Rapid Fluorescence-Based Assay for Classification of iNKT Cell Activating Glycolipids. Journal of the American Chemical Society, 2011, 133, 5198-5201.	13.7	33
43	α-Galactosylceramide Analogs with Weak Agonist Activity for Human iNKT Cells Define New Candidate Anti-Inflammatory Agents. PLoS ONE, 2010, 5, e14374.	2.5	31
44	Structural Basis for the Recognition of C20:2-αGalCer by the Invariant Natural Killer T Cell Receptor-like Antibody L363*. Journal of Biological Chemistry, 2012, 287, 1269-1278.	3.4	29
45	The Type of Growth Medium Affects the Presence of a Mycobacterial Capsule and Is Associated With Differences in Protective Efficacy of BCG Vaccination Against <i>Mycobacterium tuberculosis</i> Journal of Infectious Diseases, 2016, 214, 426-437.	4.0	29
46	A Novel Glycolipid Antigen for NKT Cells That Preferentially Induces IFN- \hat{l}^3 Production. Journal of Immunology, 2015, 195, 924-933.	0.8	28
47	Dual Modifications of α-Galactosylceramide Synergize to Promote Activation of Human Invariant Natural Killer T Cells and Stimulate Anti-tumor Immunity. Cell Chemical Biology, 2018, 25, 571-584.e8.	5.2	27
48	CD1d and Natural Killer T Cells in Immunity to Mycobacterium tuberculosis. Advances in Experimental Medicine and Biology, 2013, 783, 199-223.	1.6	24
49	Improving Mycobacterium bovis Bacillus Calmette-Guà rin as a Vaccine Delivery Vector for Viral Antigens by Incorporation of Glycolipid Activators of NKT Cells. PLoS ONE, 2014, 9, e108383.	2.5	24
50	Recombinant pro-apoptotic Mycobacterium tuberculosis generates CD8+ T cell responses against human immunodeficiency virus type 1 Env and M. tuberculosis in neonatal mice. Vaccine, 2009, 28, 152-161.	3.8	23
51	Synthesis and biological activity of \hat{l}_{\pm} -glucosyl C24:0 and C20:2 ceramides. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3475-3478.	2.2	23
52	Colocalization of a CD1d-Binding Glycolipid with a Radiation-Attenuated Sporozoite Vaccine in Lymph Node–Resident Dendritic Cells for a Robust Adjuvant Effect. Journal of Immunology, 2015, 195, 2710-2721.	0.8	22
53	Autoimmune response to transthyretin in juvenile idiopathic arthritis. JCI Insight, 2016, 1 , .	5.0	22
54	Glycolipid activators of invariant NKT cells as vaccine adjuvants. Immunogenetics, 2016, 68, 597-610.	2.4	22

#	Article	IF	CITATIONS
55	Mycobacterium tuberculosis PE_PGRS20 and PE_PGRS47 Proteins Inhibit Autophagy by Interaction with Rab1A. MSphere, 2021, 6, e0054921.	2.9	22
56	Identification of Autophagy-Inhibiting Factors of Mycobacterium tuberculosis by High-Throughput Loss-of-Function Screening. Infection and Immunity, 2020, 88, .	2.2	21
57	Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant Mycobacterium bovis BCG Vectors. Vaccine Journal, 2015, 22, 726-741.	3.1	16
58	Mycobacterium tuberculosis PPE51 Inhibits Autophagy by Suppressing Toll-Like Receptor 2-Dependent Signaling. MBio, 2022, 13, e0297421.	4.1	16
59	Rapid Identification of Immunostimulatory α-Galactosylceramides Using Synthetic Combinatorial Libraries. ACS Combinatorial Science, 2007, 9, 1084-1093.	3.3	14
60	Synthesis and biological activity of α-l-fucosyl ceramides, analogues of the potent agonist, α-d-galactosyl ceramide KRN7000. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3223-3226.	2.2	14
61	Photoactivable Glycolipid Antigens Generate Stable Conjugates with CD1d for Invariant Natural Killer T Cell Activation. Bioconjugate Chemistry, 2018, 29, 3161-3173.	3.6	14
62	Gene Deletions in Mycobacterium bovis BCG Stimulate Increased CD8 ⁺ T Cell Responses. Infection and Immunity, 2014, 82, 5317-5326.	2.2	13
63	Identification of Mycobacterial RplJ/L10 and RpsA/S1 Proteins as Novel Targets for CD4 ⁺ T Cells. Infection and Immunity, 2017, 85, .	2.2	13
64	Rapid ex vivo expansion of highly enriched human invariant natural killer T cells via single antigenic stimulation for cell therapy to prevent graft-versus-host disease. Cytotherapy, 2018, 20, 1089-1101.	0.7	13
65	A Subset of CD8αβ+ Invariant NKT Cells in a Humanized Mouse Model. Journal of Immunology, 2015, 195, 1459-1469.	0.8	11
66	Current efforts and future prospects in the development of live mycobacteria as vaccines. Expert Review of Vaccines, 2015, 14, 1493-1507.	4.4	11
67	Mrp1 is involved in lipid presentation and iNKT cell activation by Streptococcus pneumoniae. Nature Communications, 2018, 9, 4279.	12.8	11
68	Expression Patterns of Bovine CD1 In Vivo and Assessment of the Specificities of the Anti-Bovine CD1 Antibodies. PLoS ONE, 2015, 10, e0121923.	2.5	11
69	"Endocytic pH regulates cell surface localization of glycolipid antigen loaded CD1d complexesâ€. Chemistry and Physics of Lipids, 2016, 194, 49-57.	3.2	10
70	Transcriptome Analysis of Mycobacteria-Specific CD4+ T Cells Identified by Activation-Induced Expression of CD154. Journal of Immunology, 2017, 199, 2596-2606.	0.8	10
71	Promotion or Suppression of Murine Intestinal Polyp Development by iNKT Cell Directed Immunotherapy. Frontiers in Immunology, 2019, 10, 352.	4.8	10
72	BCG-Prime and boost with Esx-5 secretion system deletion mutant leads to better protection against clinical strains of Mycobacterium tuberculosis. Vaccine, 2020, 38, 7156-7165.	3.8	10

#	Article	lF	CITATIONS
73	Contribution of NKT cells to the immune response and pathogenesis triggered by respiratory viruses. Virulence, 2020, 11, 580-593.	4.4	8
74	Serial Stimulation of Invariant Natural Killer T Cells with Covalently Stabilized Bispecific T-cell Engagers Generates Antitumor Immunity While Avoiding Anergy. Cancer Research, 2021, 81, 1788-1801.	0.9	8
75	Aspirin Actions in Treatment of NSAID-Exacerbated Respiratory Disease. Frontiers in Immunology, 2021, 12, 695815.	4.8	8
76	Cutting glycolipids down to size. Nature Immunology, 2001, 2, 191-192.	14.5	7
77	Bird genes give new insights into the origins of lipid antigen presentation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8399-8400.	7.1	7
78	Identification of Mycobacterial Ribosomal Proteins as Targets for CD4 $<$ sup $>+sup>T Cells That Enhance Protective Immunity in Tuberculosis. Infection and Immunity, 2018, 86, .$	2.2	7
79	An Efficient and High Yield Method for Isolation of Mouse Dendritic Cell Subsets. Journal of Visualized Experiments, 2016, , e53824.	0.3	6
80	Co-localization of a CD1d-binding glycolipid with an adenovirus-based malaria vaccine for a potent adjuvant effect. Vaccine, 2017, 35, 3171-3177.	3.8	6
81	Isolation of intact RNA from murine CD4+ T cells after intracellular cytokine staining and fluorescence-activated cell sorting. Journal of Immunological Methods, 2018, 456, 77-80.	1.4	6
82	Amide-Linked C4″-Saccharide Modification of KRN7000 Provides Potent Stimulation of Human Invariant NKT Cells and Anti-Tumor Immunity in a Humanized Mouse Model. ACS Chemical Biology, 2020, 15, 3176-3186.	3.4	6
83	Suppression of Th1 Priming by TLR2 Agonists during Cutaneous Immunization Is Mediated by Recruited CCR2+ Monocytes. Journal of Immunology, 2018, 201, 3604-3616.	0.8	5
84	Structure-Function Implications of the Ability of Monoclonal Antibodies Against \hat{l}_{\pm} -Galactosylceramide-CD1d Complex to Recognize \hat{l}^{2} -Mannosylceramide Presentation by CD1d. Frontiers in Immunology, 2019, 10, 2355.	4.8	5
85	Evasion of Innate and Adaptive Immunity by Mycobacterium tuberculosis., 0,, 747-772.		5
86	Endocytic pH regulates cell surface localization of glycolipid antigen loaded CD1d complexes. Chemistry and Physics of Lipids, 2015, 191, 75-83.	3.2	4
87	Exacting Edward Jenner's revenge: The quest for a new tuberculosis vaccine. Science Translational Medicine, 2019, 11, .	12.4	4
88	Generation of IL-3–Secreting CD4+ T Cells by Microbial Challenge at Skin and Mucosal Barriers. ImmunoHorizons, 2019, 3, 161-171.	1.8	4
89	Species Specific Differences of CD1d Oligomer Loading In Vitro. PLoS ONE, 2015, 10, e0143449.	2.5	3
90	Exploiting Pre-Existing CD4+ T Cell Help from Bacille Calmette–Guérin Vaccination to Improve Antiviral Antibody Responses. Journal of Immunology, 2020, 205, 425-437.	0.8	3

#	Article	IF	CITATIONS
91	Harnessing the Versatility of Invariant NKT Cells in a Stepwise Approach to Sepsis Immunotherapy. Journal of Immunology, 2021, 206, 386-397.	0.8	3
92	Isolation and in vivo Transfer of Antigen Presenting Cells. Bio-protocol, 2014, 4, .	0.4	3
93	Identification of Novel Mycobacterial Targets for Murine CD4+ T-Cells by IFNÎ ³ ELISPOT. Methods in Molecular Biology, 2018, 1808, 143-150.	0.9	1
94	Sterilization by Adaptive Immunity of a Conditionally Persistent Mutant of Mycobacterium tuberculosis. MBio, 2021, 12, .	4.1	1
95	CD1 and nonpeptide antigen recognition systems in microbial immunity., 2003,, 21-38.		O
96	Antigen Processing and Presentation by CD1 Family Proteins., 2006,, 129-156.		0