List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4521964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visual Function and Brief Cognitive Assessment for Multiple Sclerosis in Optic Neuritis Clinically Isolated Syndrome Patients. Journal of Neuro-Ophthalmology, 2022, 42, e22-e31.	0.8	4
2	Machine Learning Utility for Optical Coherence Tomography in Multiple Sclerosis. Neurology, 2022, 99, 453-454.	1.1	4
3	Seeing the Finish Line. Neurology, 2021, 96, 731-732.	1.1	1
4	Diagnosis of Progressive Multiple Sclerosis From the Imaging Perspective. JAMA Neurology, 2021, 78, 351.	9.0	30
5	Brain microstructural and metabolic alterations detected <i>in vivo</i> at onset of the first demyelinating event. Brain, 2021, 144, 1409-1421.	7.6	24
6	APOSTEL 2.0 Recommendations for Reporting Quantitative Optical Coherence Tomography Studies. Neurology, 2021, 97, 68-79.	1.1	96
7	Blood Oxygenation Level-Dependent Response to Multiple Grip Forces in Multiple Sclerosis: Going Beyond the Main Effect of Movement in Brodmann Area 4a and 4p. Frontiers in Cellular Neuroscience, 2021, 15, 616028.	3.7	5
8	ls OCT a Viable Tool to Monitor Disease-Modifying Treatments in RRMS Yet?. Neurology, 2021, 96, 927-928.	1.1	0
9	Artificial intelligence extension of the OSCARâ€ŀB criteria. Annals of Clinical and Translational Neurology, 2021, 8, 1528-1542.	3.7	33
10	Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain, 2021, 144, 1296-1311.	7.6	81
11	Comparison of Neurite Orientation Dispersion and Density Imaging and Two-Compartment Spherical Mean Technique Parameter Maps in Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 662855.	2.4	12
12	Sarcoidosis and neuromyelitis optica in a patient with optic neuritis – a case report. Annals of Clinical and Translational Neurology, 2021, 8, 1760-1763.	3.7	0
13	Alopecia Universalis Occurring after Alemtuzumab Treatment for Multiple Sclerosis. A Two-Year Follow-Up of Two Patients. International Journal of Environmental Research and Public Health, 2021, 18, 7338.	2.6	4
14	Editorial: Neuroinflammation and the Visual System. Frontiers in Neurology, 2021, 12, 724447.	2.4	3
15	Clinical relevance of cortical network dynamics in early primary progressive MS. Multiple Sclerosis Journal, 2020, 26, 442-456.	3.0	14
16	A multi-shell multi-tissue diffusion study of brain connectivity in early multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 774-785.	3.0	13
17	Single-subject structural cortical networks in clinically isolated syndrome. Multiple Sclerosis Journal, 2020, 26, 1392-1401.	3.0	10
18	Reduced neurite density in the brain and cervical spinal cord in relapsing–remitting multiple sclerosis: A NODDI study. Multiple Sclerosis Journal, 2020, 26, 1647-1657.	3.0	48

#	Article	IF	CITATIONS
19	Safety and efficacy of MD1003 (high-dose biotin) in patients with progressive multiple sclerosis (SPI2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurology, The, 2020, 19, 988-997.	10.2	64
20	Real-World Clinical Experience With Idebenone in the Treatment of Leber Hereditary Optic Neuropathy. Journal of Neuro-Ophthalmology, 2020, 40, 558-565.	0.8	72
21	Clinical commentary on the broadening spectrum of myelin oligodendrocyte glycoprotein–associated disorder (MOGAD). Multiple Sclerosis Journal, 2020, 26, 1443-1444.	3.0	1
22	Disrupted principal network organisation in multiple sclerosis relates to disability. Scientific Reports, 2020, 10, 3620.	3.3	2
23	Advances in brain imaging in multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641985972.	3.5	56
24	Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain, 2019, 142, 1858-1875.	7.6	303
25	Edge and Properties in Multiple. Mathematics and Visualization, 2019, , 281-291.	0.6	0
26	Advances in spinal cord imaging in multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641984059.	3.5	69
27	Gray vs. White Matter Segmentation of the Conus Medullaris: Reliability and Variability in Healthy Volunteers. Journal of Neuroimaging, 2019, 29, 410-417.	2.0	9
28	Structural network disruption markers explain disability in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 219-226.	1.9	37
29	Longitudinal Analysis Framework of DWI Data for Reconstructing Structural Brain Networks with Application to Multiple Sclerosis. Mathematics and Visualization, 2018, , 205-218.	0.6	0
30	Valuable Insights Into Visual Neuroplasticity After Optic Neuritis. JAMA Neurology, 2018, 75, 274.	9.0	2
31	Prominent Changes in Cerebro-Cerebellar Functional Connectivity During Continuous Cognitive Processing. Frontiers in Cellular Neuroscience, 2018, 12, 331.	3.7	27
32	MD1003 (High-Dose Pharmaceutical-Grade Biotin) for the Treatment of Chronic Visual Loss Related to Optic Neuritis in Multiple Sclerosis: A Randomized, Double-Blind, Placebo-Controlled Study. CNS Drugs, 2018, 32, 661-672.	5.9	26
33	Structural cortical network reorganization associated with early conversion to multiple sclerosis. Scientific Reports, 2018, 8, 10715.	3.3	19
34	Optic neuritis: the eye as a window to the brain. Current Opinion in Neurology, 2017, 30, 61-66.	3.6	47
35	Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurology, The, 2017, 16, 797-812.	10.2	397
36	Commentary on retrograde trans-synaptic visual pathway degeneration in MS: A case series. Multiple Sclerosis Journal, 2017, 23, 1039-1040.	3.0	0

#	Article	IF	CITATIONS
37	Cerebellar lobules and dentate nuclei mirror cortical forceâ€relatedâ€BOLD responses: Beyond all (linear) expectations. Human Brain Mapping, 2017, 38, 2566-2579.	3.6	14
38	OCT as a window to the MS brain. Neurology, 2017, 89, 2404-2405.	1.1	3
39	Phenytoin for neuroprotection in patients with acute optic neuritis: a randomised, placebo-controlled, phase 2 trial. Lancet Neurology, The, 2016, 15, 259-269.	10.2	168
40	Longitudinal evidence for anterograde trans-synaptic degeneration after optic neuritis. Brain, 2016, 139, 816-828.	7.6	67
41	Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum. Brain Structure and Function, 2016, 221, 2443-2458.	2.3	33
42	Differential involvement of cortical and cerebellar areas using dominant and nondominant hands: An <scp>FMRI</scp> study. Human Brain Mapping, 2015, 36, 5079-5100.	3.6	36
43	Conversion from clinically isolated syndrome to multiple sclerosis: A large multicentre study. Multiple Sclerosis Journal, 2015, 21, 967-968.	3.0	11
44	MRI in Leber's hereditary optic neuropathy: the relationship to multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 537-542.	1.9	58
45	Optical coherence tomography should be part of the routine monitoring of patients with multiple sclerosis: No. Multiple Sclerosis Journal, 2014, 20, 1299-1301.	3.0	6
46	Parinaud's syndrome – A rare presentation of clinically isolated syndrome. Multiple Sclerosis and Related Disorders, 2014, 3, 398-401.	2.0	3
47	Optic neuritis. Lancet Neurology, The, 2014, 13, 83-99.	10.2	463
48	A novel approach with "skeletonised MTR―measures tractâ€specific microstructural changes in early primaryâ€progressive MS. Human Brain Mapping, 2014, 35, 723-733.	3.6	12
49	Voxel-based cervical spinal cord mapping of diffusion abnormalities in MS-related myelitis. Neurology, 2014, 83, 1321-1325.	1.1	24
50	Symptomatic treatment and management of multiple sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 122, 513-562.	1.8	49
51	Low Myoâ€inositol indicating astrocytic damage in a case series of neuromyelitis optica. Annals of Neurology, 2013, 74, 301-305.	5.3	44
52	MRI Acquisition and Analysis Protocol for In Vivo Intraorbital Optic Nerve Segmentation at 3T. , 2013, 54, 4235.		17
53	Setting a research agenda for progressive multiple sclerosis: The International Collaborative on Progressive MS. Multiple Sclerosis Journal, 2012, 18, 1534-1540.	3.0	116
54	Early pericalcarine atrophy in acute optic neuritis is associated with conversion to multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1017-1021.	1.9	22

#	Article	IF	CITATIONS
55	A comprehensive assessment of cerebellar damage in multiple sclerosis using diffusion tractography and volumetric analysis. Multiple Sclerosis Journal, 2011, 17, 1079-1087.	3.0	62
56	A longitudinal functional MRI study of non-arteritic anterior ischaemic optic neuropathy patients. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 905-913.	1.9	8
57	Dissecting structure–function interactions in acute optic neuritis to investigate neuroplasticity. Human Brain Mapping, 2010, 31, 276-286.	3.6	34
58	Pharmacological management of symptoms in multiple sclerosis: current approaches and future directions. Lancet Neurology, The, 2010, 9, 1182-1199.	10.2	146
59	Neuroplasticity predicts outcome of optic neuritis independent of tissue damage. Annals of Neurology, 2010, 67, 99-113.	5.3	75
60	New developments in the treatment of optic neuritis. Eye and Brain, 2010, 2, 83.	2.5	6
61	Assessing Neuronal Metabolism In Vivo by Modeling Imaging Measures. Journal of Neuroscience, 2010, 30, 15030-15033.	3.6	47
62	Transient Monocular Blindness Successfully Treated by Lowering Intraocular Pressure. Neuro-Ophthalmology, 2008, 32, 203-205.	1.0	3
63	Functional imaging correlates of fronto-temporal dysfunction in Morvan's syndrome. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 79, 734-735.	1.9	30
64	Monocular complex visual hallucinations and their suppression by eye closure. Eye, 2006, 20, 732-733.	2.1	6
65	Functional response to active and passive ankle movements with clinical correlations in patients with primary progressive multiple sclerosis. Journal of Neurology, 2006, 253, 882-891.	3.6	58
66	Mechanisms of disability and potential for recovery in multiple sclerosis. , 2006, , 1-29.		1
67	Optic radiation changes after optic neuritis detected by tractography-based group mapping. Human Brain Mapping, 2005, 25, 308-316.	3.6	114
68	Adaptive cortical plasticity in higher visual areas after acute optic neuritis. Annals of Neurology, 2005, 57, 622-633.	5.3	100
69	ldentifying brain regions for integrative sensorimotor processing with ankle movements. Experimental Brain Research, 2005, 166, 31-42.	1.5	132
70	Functional MRI. , 2005, , 93-110.		2
71	A serial MRI study following optic nerve mean area in acute optic neuritis. Brain, 2004, 127, 2498-2505.	7.6	125
72	Abnormalities of cerebral perfusion in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2004, 75, 1288-1293.	1.9	115

#	Article	IF	CITATIONS
73	Visual recovery following acute optic neuritis. Journal of Neurology, 2004, 251, 996-1005.	3.6	91
74	Characterizing function–structure relationships in the human visual system with functional MRI and diffusion tensor imaging. NeuroImage, 2004, 21, 1452-1463.	4.2	149
75	From diffusion tractography to quantitative white matter tract measures: a reproducibility study. NeuroImage, 2003, 18, 348-359.	4.2	219
76	Diffusion tractography based group mapping of major white-matter pathways in the human brain. NeuroImage, 2003, 19, 1545-1555.	4.2	116
77	Diffusion tensor imaging detects corticospinal tract involvement at multiple levels in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2003, 74, 1250-1257.	1.9	165
78	Serial magnetization transfer imaging in acute optic neuritis. Brain, 2003, 127, 692-700.	7.6	107
79	Functional magnetic resonance imaging of the cortical response to photic stimulation in humans following optic neuritis recovery. Neuroscience Letters, 2002, 330, 255-259.	2.1	59
80	Asymmetrical Activation of Human Visual Cortex Demonstrated by Functional MRI with Monocular Stimulation. NeuroImage, 2001, 14, 632-641.	4.2	33
81	Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2000, 69, 269-272.	1.9	357
82	Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: a functional magnetic resonance imaging study. Journal of Neurology, Neurosurgery and Psychiatry, 2000, 68, 441-449.	1.9	186
83	Resting state fMRI during continuous cognitive processing reveals dynamical changes of brain networks involving cerebral cortex and cerebellum. Frontiers in Cellular Neuroscience, 0, 11, .	3.7	1
84	Investigating the relationship between multiple grip forces and BOLD signal in the Cerebellum and dentate nuclei of MS subjects. Frontiers in Cellular Neuroscience, 0, 11, .	3.7	0
85	Different functional networks observed in multiple sclerosis during rest and motor task fMRI. Frontiers in Cellular Neuroscience, 0, 11, .	3.7	1