
David Heyes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4521030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular dynamics computer simulation of surface properties of crystalline potassium chloride. Journal of the Chemical Society, Faraday Transactions 2, 1977, 73, 1485.	1.1	179
2	Transport coefficients of Lennard-Jones fluids: A molecular-dynamics and effective-hard-sphere treatment. Physical Review B, 1988, 37, 5677-5696.	3.2	130
3	Time dependent nonlinear shear stress effects in simple liquids: A molecular dynamics study. Journal of Chemical Physics, 1980, 73, 3987-3996.	3.0	126
4	Advances in nonequilibrium molecular dynamics simulations of lubricants and additives. Friction, 2018, 6, 349-386.	6.4	118
5	Interactions between microgel particles. Soft Matter, 2009, 5, 2681.	2.7	110
6	Self-diffusion and shear viscosity of simple fluids. A molecular-dynamics study. Journal of the Chemical Society, Faraday Transactions 2, 1983, 79, 1741.	1.1	99
7	Shear thinning and thickening of the Lennard-Jones liquid. A molecular dynamics study. Journal of the Chemical Society, Faraday Transactions 2, 1986, 82, 1365.	1.1	92
8	Transport coefficients of hard sphere fluids. Molecular Physics, 2003, 101, 469-482.	1.7	91
9	Simulations of electrorheological and particle mixture suspensions: Agglomerate and layer structures. Journal of Chemical Physics, 1993, 98, 5873-5886.	3.0	80
10	Self-Diffusion Coefficient of the Hard-Sphere Fluid:Â System Size Dependence and Empirical Correlations. Journal of Physical Chemistry B, 2007, 111, 1455-1464.	2.6	79
11	Stratification in poured granular heaps. Nature, 1998, 391, 136-136.	27.8	76
12	Revisiting the Stokes-Einstein relation without a hydrodynamic diameter. Journal of Chemical Physics, 2019, 150, 021101.	3.0	69
13	Auxeticity of cubic materials under pressure. Physica Status Solidi (B): Basic Research, 2011, 248, 96-104.	1.5	67
14	Nonequilibrium molecular dynamics study of shear flow in soft disks. Journal of Chemical Physics, 1985, 83, 4760-4766.	3.0	63
15	Thermal conductivity and bulk viscosity of simple fluids. A molecular-dynamics study. Journal of the Chemical Society, Faraday Transactions 2, 1984, 80, 1363.	1.1	60
16	Temperatures: old, new and middle aged. Molecular Physics, 2005, 103, 1361-1373.	1.7	60
17	Transport coefficients of model simple liquids. A molecular-dynamics study and effective hard-sphere analysis. Journal of the Chemical Society, Faraday Transactions 2, 1988, 84, 705.	1.1	56
18	Equation of state and structural properties of the Weeks-Chandler-Andersen fluid. Journal of Chemical Physics, 2006, 124, 164507.	3.0	56

#	Article	IF	CITATIONS
19	Recent Advances in Moleculardynamics Computer Simulation. Advances in Chemical Physics, 2007, , 493-575.	0.3	53
20	On the effect of confined fluid molecular structure on nonequilibrium phase behaviour and friction. Physical Chemistry Chemical Physics, 2017, 19, 17883-17894.	2.8	51
21	Thermodynamic and dynamical properties of the hard sphere system revisited by molecular dynamics simulation. Physical Chemistry Chemical Physics, 2019, 21, 6886-6899.	2.8	48
22	Molecular dynamics simulations of liquid binary mixtures: Partial properties of mixing and transport coefficients. Journal of Chemical Physics, 1992, 96, 2217-2227.	3.0	45
23	Some physical consequences of large shear rates on simple liquids. Journal of Chemical Physics, 1986, 85, 997-1008.	3.0	44
24	Correlation functions in Couette flow from group theory and molecular dynamics. Molecular Physics, 1988, 65, 1441-1453.	1.7	43
25	Atomistic Simulation of Overbased Detergent Inverse Micelles. Langmuir, 1996, 12, 2418-2424.	3.5	42
26	Thermodynamic, mechanical and transport properties of fluids with steeply repulsive potentials. Molecular Physics, 1998, 95, 259-267.	1.7	41
27	Pressure dependence of confined liquid behavior subjected to boundary-driven shear. Journal of Chemical Physics, 2012, 136, 134705.	3.0	40
28	Large Timesteps in Molecular Dynamics Simulations. Molecular Simulation, 1988, 1, 277-297.	2.0	38
29	Percolation cluster statistics of Lennard-Jones fluids. Molecular Physics, 1989, 66, 1057-1074.	1.7	38
30	Translational and rotational diffusion of model nanocolloidal dispersions studied by molecular dynamics simulations. Journal of Physics Condensed Matter, 1998, 10, 10159-10178.	1.8	37
31	Viscoelastic behaviour of fluids with steeply repulsive potentials. Molecular Physics, 2000, 98, 917-927.	1.7	37
32	The equivalence between volume averaging and method of planes definitions of the pressure tensor at a plane. Journal of Chemical Physics, 2011, 135, 024512.	3.0	37
33	Traction and nonequilibrium phase behavior of confined sheared liquids at high pressure. Physical Review E, 2013, 88, 052406.	2.1	37
34	The influence of potential softness on the transport coefficients of simple fluids. Journal of Chemical Physics, 2005, 122, 234504.	3.0	36
35	Molecular dynamics simulations of stretched water: Local structure and spectral signatures. Journal of Chemical Physics, 1998, 108, 9039-9049.	3.0	35
36	Cubic materials in different auxetic regions: Linking microscopic to macroscopic formulations. Physica Status Solidi (B): Basic Research, 2012, 249, 1373-1378.	1.5	34

#	Article	IF	CITATIONS
37	Purely viscous fluids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 455, 3725-3742.	2.1	32
38	Time correlation functions of hard sphere and soft sphere fluids. Physical Review E, 2004, 69, 021202.	2.1	31
39	Control-volume representation of molecular dynamics. Physical Review E, 2012, 85, 056705.	2.1	30
40	Clustering and some other physical effects of van der Waals potentials. Molecular Physics, 1986, 59, 1369-1388.	1.7	29
41	Thermal conductivity of fluids with steeply repulsive potentials. Molecular Physics, 2001, 99, 1077-1089.	1.7	29
42	The velocity autocorrelation function and self-diffusion coefficient of fluids with steeply repulsive potentials. Molecular Physics, 2002, 100, 595-610.	1.7	29
43	Percolation threshold of hard-sphere fluids in between the soft-core and hard-core limits. Molecular Physics, 2006, 104, 3137-3146.	1.7	29
44	Physico-chemical characterisation of oil-soluble overbased phenate detergents. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 687.	1.7	28
45	System size dependence of the transport coefficients and Stokes–Einstein relationship of hard sphere and Weeks–Chandler–Andersen fluids. Journal of Physics Condensed Matter, 2007, 19, 376106.	1.8	28
46	Transport coefficients of the Lennard-Jones fluid close to the freezing line. Journal of Chemical Physics, 2019, 151, 204502.	3.0	28
47	Interfacial Characterization of Succinimide Surfactants. Langmuir, 1997, 13, 5881-5893.	3.5	26
48	Structural evolution of phase-separating model colloidal liquids by Brownian dynamics computer simulation. Journal of Chemical Physics, 1998, 109, 7567-7577.	3.0	26
49	Thermodynamic properties and entropy scaling law for diffusivity in soft spheres. Physical Review E, 2014, 90, 012106.	2.1	26
50	Scaling of Lennard–Jones liquid elastic moduli, viscoelasticity and other properties along fluid–solid coexistence. Physica Status Solidi (B): Basic Research, 2015, 252, 1514-1525.	1.5	26
51	Brownian Dynamics Simulations of Electro-Rheological Fluids, II. Molecular Simulation, 1990, 5, 293-306.	2.0	25
52	The collapsing bubble in a liquid by molecular dynamics simulations. Molecular Physics, 2002, 100, 3451-3468.	1.7	25
53	Communication: Simple liquids' high-density viscosity. Journal of Chemical Physics, 2018, 148, 081101.	3.0	25
54	Thermodynamic properties of inverse power fluids. Physical Review E, 2006, 74, 031202.	2.1	24

#	Article	IF	CITATIONS
55	Some physical properties of the Weeks–Chandler–Andersen fluid. Molecular Simulation, 2006, 32, 45-50.	2.0	24
56	Rheology of transient colloidal gels by Brownian dynamics computer simulation. Journal of Rheology, 1999, 43, 219-244.	2.6	23
57	Self-diffusion coefficients and shear viscosity of inverse power fluids: from hard- to soft-spheres. Physical Chemistry Chemical Physics, 2008, 10, 4036.	2.8	23
58	The Lennard-Jones melting line and isomorphism. Journal of Chemical Physics, 2015, 143, 234504.	3.0	23
59	Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study. Journal of Chemical Physics, 2016, 145, 164704.	3.0	23
60	Transport coefficients of the Lennard–Jones fluid by molecular dynamics. Canadian Journal of Physics, 1986, 64, 773-781.	1.1	22
61	Comprehensive representation of the Lennard-Jones equation of state based on molecular dynamics simulation data. Journal of Chemical Physics, 2018, 148, 114505.	3.0	22
62	Microscopic Simulation of Rheology: Molecular Dynamics Computations and Percolation theory. Molecular Simulation, 1989, 2, 281-300.	2.0	21
63	Self-diffusion coefficients and shear viscosity of model nanocolloidal dispersions by molecular dynamics simulation. Physical Review E, 1998, 58, 5845-5854.	2.1	21
64	Overbased detergent particles: Experimental and molecular modelling studies. Physical Chemistry Chemical Physics, 2001, 3, 4774-4783.	2.8	21
65	Boundary-controlled barostats for slab geometries in molecular dynamics simulations. Physical Review E, 2014, 90, 043302.	2.1	21
66	Elastic moduli of simple fluids with steeply repulsive potentials. Journal of Chemical Physics, 1994, 100, 2149-2153.	3.0	20
67	Discrete–element method simulations: from micro to macro scales. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 1853-1865.	3.4	20
68	Static properties and time correlation functions of fluids with steeply repulsive potentials. Molecular Physics, 2004, 102, 2057-2070.	1.7	20
69	The Newtonian viscosity of concentrated stabilized dispersions: Comparisons with the hard sphere fluid. Journal of Rheology, 2004, 48, 223-248.	2.6	20
70	Physical properties of soft repulsive particle fluids. Physical Chemistry Chemical Physics, 2007, 9, 5570.	2.8	20
71	Shear stress relaxation and diffusion in simple liquids by molecular dynamics simulations: Analytic expressions and paths to viscosity. Journal of Chemical Physics, 2019, 150, 174504.	3.0	20
72	Shadow Hamiltonian in classical NVE molecular dynamics simulations: A path to long time stability. Journal of Chemical Physics, 2020, 152, 024114.	3.0	20

#	Article	IF	CITATIONS
73	More efficient Brownian dynamics algorithms. Molecular Physics, 2000, 98, 1949-1960.	1.7	19
74	The stability of many-body systems. Journal of Physics Condensed Matter, 2007, 19, 416101.	1.8	19
75	Molecular dynamics simulations of ionic crystal films. Journal of Chemical Physics, 1983, 79, 4010-4028.	3.0	18
76	Soft-sphere soft glasses. Journal of Chemical Physics, 2009, 131, 204506.	3.0	18
77	Role of Deprotonation Free Energies in p <i>K</i> _a Prediction and Molecule Ranking. Journal of Chemical Theory and Computation, 2014, 10, 2537-2545.	5.3	18
78	Polyelectrolyte pK _a from experiment and molecular dynamics simulation. RSC Advances, 2017, 7, 20007-20014.	3.6	18
79	Thermodynamics and elastic moduli of fluids with steeply repulsive potentials. Journal of Chemical Physics, 1997, 107, 1963-1969.	3.0	17
80	Viscoelasticity of fluids with steeply repulsive potentials. Journal of Chemical Physics, 2003, 118, 11048-11056.	3.0	17
81	The rheology of gases. A molecular-dynamics study. Journal of the Chemical Society, Faraday Transactions 2, 1987, 83, 319.	1.1	16
82	Translational and rotational diffusion of model nanocolloidal dispersions by molecular dynamics simulations. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1625-1632.	1.7	16
83	Translational and rotational diffusion of rod shaped molecules by molecular dynamics simulations. Journal of Chemical Physics, 2019, 150, 184503.	3.0	16
84	Experimental and molecular modelling studies of overbased detergent particles. Physical Chemistry Chemical Physics, 2000, 2, 5197-5207.	2.8	15
85	Pair correlation function of soft-sphere fluids. Journal of Chemical Physics, 2011, 134, 064115.	3.0	15
86	Experimental and Simulation Studies of Electro-rheology. Molecular Simulation, 1989, 4, 137-151.	2.0	14
87	Mesoscale modelling studies of microemulsions. Physical Chemistry Chemical Physics, 2001, 3, 5255-5265.	2.8	14
88	Transport coefficients of soft sphere fluids. Physical Chemistry Chemical Physics, 2005, 7, 1220-1227.	2.8	14
89	The method of planes pressure tensor for a spherical subvolume. Journal of Chemical Physics, 2014, 140, 054506.	3.0	14
90	The second virial coefficient and critical point behavior of the Mie Potential. Journal of Chemical Physics, 2016, 145, 084505.	3.0	14

#	Article	IF	CITATIONS
91	A comprehensive study of the thermal conductivity of the hard sphere fluid and solid by molecular dynamics simulation. Physical Chemistry Chemical Physics, 2020, 22, 8834-8845.	2.8	14
92	Dynamic moduli of concentrated dispersions by Brownian dynamics. Journal of Rheology, 1994, 38, 465-483.	2.6	13
93	Molecular dynamics simulations of granular compaction: The single granule case. Journal of Chemical Physics, 2003, 118, 4636-4648.	3.0	13
94	Brownian dynamics of suspensions of rodlike particles. Physical Review E, 1994, 50, 4810-4816.	2.1	12
95	Dispersions of rodlike particles in shear flow by Brownian dynamics simulations. Journal of Chemical Physics, 1998, 109, 312-317.	3.0	12
96	Brownian dynamics simulations of attractive polymers in solution. Journal of Chemical Physics, 2002, 117, 2377-2388.	3.0	12
97	Towards the Irving-Kirkwood limit of the mechanical stress tensor. Journal of Chemical Physics, 2017, 146, 224109.	3.0	12
98	Incremental viscosity by non-equilibrium molecular dynamics and the Eyring model. Journal of Chemical Physics, 2018, 148, 194506.	3.0	11
99	Transport Coefficients Of Ar—Kr Mixtures by Molecular Dynamics Computer Simulation. Physics and Chemistry of Liquids, 1991, 23, 123-149.	1.2	10
100	Theoretical Approaches to Thermal Conductivity in Liquids. Physics and Chemistry of Liquids, 1996, 33, 65-83.	1.2	10
101	Mechanical, rheological and transport properties of soft particle fluids. Molecular Simulation, 2005, 31, 945-959.	2.0	10
102	Rounded stretched exponential for time relaxation functions. Journal of Chemical Physics, 2009, 131, 214509.	3.0	10
103	Chemical potential of a test hard sphere of variable size in a hard-sphere fluid. Journal of Chemical Physics, 2016, 145, 214504.	3.0	10
104	Representation of the direct correlation function of the hard-sphere fluid. Physical Review E, 2017, 95, 062104.	2.1	10
105	Microscopic Motion of Atoms in Simple Liquids at Equilibrium and with Shear Flow. Physics and Chemistry of Liquids, 1990, 22, 31-50.	1.2	9
106	Chemical Potential, Partial Enthalpy and Partial Volume of Mixtures by <i>NPT</i> Molecular Dynamics. Molecular Simulation, 1992, 8, 227-238.	2.0	9
107	Growth of hexagonal string phases in sheared colloid simulation. Journal of Chemical Physics, 1994, 101, 6096-6100.	3.0	9
108	Calculation of nanocolloidal liquid time scales by molecular dynamics simulations. Molecular Physics, 1999, 96, 1757-1766.	1.7	9

#	Article	IF	CITATIONS
109	Molecular Dynamics Simulations of Granular Compaction. Chemistry of Materials, 2003, 15, 3417-3430.	6.7	9
110	Stability of separation-shifted Lennard-Jones fluids. Journal of Chemical Physics, 2007, 126, 084510.	3.0	9
111	Thermodynamic curvature of soft-sphere fluids and solids. Physical Review E, 2018, 97, 022119.	2.1	9
112	Lennard-Jones Elastic Moduli by Liquid Structure Integral Equations and Molecular Dynamics Computer Simulations. Physics and Chemistry of Liquids, 1989, 20, 115-130.	1.2	8
113	Self-diffusion of large solid clusters in a liquid by molecular dynamics simulation. Molecular Physics, 1996, 88, 1503-1516.	1.7	8
114	First derivative of the hard-sphere radial distribution function at contact. Journal of Physics Condensed Matter, 2006, 18, 7553-7558.	1.8	8
115	Liquids at positive and negative pressure. Physica Status Solidi (B): Basic Research, 2008, 245, 530-538.	1.5	8
116	Lattice summations for spread out particles: Applications to neutral and charged systems. Journal of Chemical Physics, 2013, 138, 034504.	3.0	8
117	Viscuit and the fluctuation theorem investigation of shear viscosity by molecular dynamics simulations: The information and the noise. Journal of Chemical Physics, 2021, 154, 074503.	3.0	8
118	Shadow Hamiltonian in classical NVE molecular dynamics simulations involving Coulomb interactions. Journal of Chemical Physics, 2021, 154, 174102.	3.0	8
119	Collective Correlation Functions in Shear Flow: A Non-Equilibrium Molecular Dynamics and Group Theory Statistical Mechanics Treatment. Molecular Simulation, 1990, 4, 399-408.	2.0	7
120	Overdamped Brownian motion in periodic symmetric potentials. Journal of Chemical Physics, 2000, 113, 9911-9919.	3.0	7
121	Single particle force distributions in simple fluids. Journal of Chemical Physics, 2012, 137, 094505.	3.0	7
122	Self-Assembly of Calcium Carbonate Nanoparticles in Water and Hydrophobic Solvents. Journal of Physical Chemistry C, 2014, 118, 21092-21103.	3.1	7
123	Response of Calcium Carbonate Nanoparticles in Hydrophobic Solvent to Pressure, Temperature, and Water. Journal of Physical Chemistry C, 2015, 119, 16879-16888.	3.1	7
124	Galilean-invariant Nosé-Hoover-type thermostats. Physical Review E, 2015, 91, 033312.	2.1	7
125	A localized momentum constraint for non-equilibrium molecular dynamics simulations. Journal of Chemical Physics, 2015, 142, 074110.	3.0	7
126	Spatially dependent diffusion coefficient as a model for pH sensitive microgel particles in microchannels. Biomicrofluidics, 2016, 10, 054118.	2.4	7

#	Article	IF	CITATIONS
127	Single trajectory transport coefficients and the energy landscape by molecular dynamics simulations. Journal of Chemical Physics, 2020, 152, 194504.	3.0	7
128	Application of cell models to the melting and sublimation lines of the Lennard-Jones and related potential systems. Physical Review E, 2021, 104, 044119.	2.1	7
129	Dynamical properties and transport coefficients of oneâ€dimensional Lennardâ€Jones fluids: A molecular dynamics study. Journal of Chemical Physics, 1990, 92, 1106-1116.	3.0	6
130	Equation of state of inverse power fluids. Molecular Physics, 2004, 102, 2049-2056.	1.7	6
131	The effects of particle softness on the dynamics of molecular and colloidal systems. Molecular Physics, 2005, 103, 2359-2373.	1.7	6
132	Chemical potential of a test hard sphere of variable size in hard-sphere fluid mixtures. Journal of Chemical Physics, 2018, 148, 214503.	3.0	6
133	Nonlinear Shear Stress and Thermal Effects in Fully Flooded Elastohydrodynamic Line Contacts. Journal of Lubrication Technology, 1980, 102, 459-465.	0.1	5
134	The Use of Line and Point Contacts in Determining Lubricant Rheology Under Low Slip Elastohydrodynamic Conditions. Journal of Lubrication Technology, 1983, 105, 280-287.	0.1	5
135	Percolation of three-dimensional square-well fluid mixtures. Molecular Physics, 1992, 77, 29-44.	1.7	5
136	Molecular and Brownian Dynamics Simulations of Self-Diffusion in Inverse Power Fluids. Physics and Chemistry of Liquids, 1994, 28, 95-115.	1.2	5
137	The effects of bead–bead repulsion on the spacial and time correlation functions of model polymer solutions: Mesoscale simulations. Journal of Chemical Physics, 1999, 111, 10694-10705.	3.0	5
138	Relations Between Transport Coefficients in Lennard–Jones Fluids and in Liquid Metals. International Journal of Thermophysics, 1999, 20, 267-277.	2.1	5
139	Evidence for a fragmentation mechanism during the formation of calcium carbonate organo-nano-particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 184-188.	4.7	5
140	Transport coefficients of soft repulsive particle fluids. Journal of Physics Condensed Matter, 2008, 20, 115102.	1.8	5
141	Second virial coefficient of rod-shaped molecules and molecular dynamics simulations of the isotropic phase. Physical Review E, 2015, 91, 042134.	2.1	5
142	Molecular Dynamics Studies of Overbased Detergents on a Water Surface. Langmuir, 2017, 33, 7263-7270.	3.5	5
143	Equilibrium Molecular Dynamics Computer Simulations of the Transport Coefficients of Ar-CH ₄ Mixtures. Molecular Simulation, 1991, 7, 221-239.	2.0	4
144	Brownian Dynamics Simulations of Colloidal Liquids: Hydrodynamics and Stress Relaxation. Molecular Simulation, 1995, 15, 327-341.	2.0	4

#	Article	IF	CITATIONS
145	Brownian Dynamics Simulations of Domain Growth in Lennard-Jones Fluids. Molecular Simulation, 1996, 18, 155-177.	2.0	4
146	Self-diffusion of large solid clusters in a liquid by molecular dynamics simulation. Molecular Physics, 1996, 88, 1503-1516.	1.7	4
147	Molecular dynamics study and parametrisation of the infinite-frequency shear and compressional moduli of the Lennard-Jones fluid. Journal of the Chemical Society, Faraday Transactions 2, 1989, 85, 239.	1.1	3
148	Mechanical Properties of Liquids: Newtonian and Beyond. Physics and Chemistry of Liquids, 1994, 28, 1-27.	1.2	3
149	Stokesian Dynamics Simulations of Colloids Under Shear. Molecular Simulation, 1995, 15, 361-380.	2.0	3
150	Brownian Dynamics Simulations of Aggregation and Gel Formation in Lennard-Jones Fluids. Physics and Chemistry of Liquids, 1996, 31, 209-230.	1.2	3
151	Brownian Dynamics Computer Simulations of Quenched Lennard-Jones-like Fluids: I Morphology and Local Structural Evolution. Molecular Simulation, 1999, 23, 203-241.	2.0	3
152	A molecular dynamics study of CaCO3 nanoparticles in a hydrophobic solvent with a stearate co-surfactant. Physical Chemistry Chemical Physics, 2015, 17, 13575-13581.	2.8	3
153	Isotropic-nematic phase transition of uniaxial variable softness prolate and oblate ellipsoids. Journal of Chemical Physics, 2017, 146, 164505.	3.0	3
154	The second virial coefficient of bounded Mie potentials. Journal of Chemical Physics, 2017, 147, 214504.	3.0	3
155	Statistical Analysis and Molecular Dynamics Simulations of the Thermal Conductivity of Lennard–Jones Solids Including Their Pressure and Temperature Dependencies. Physica Status Solidi (B): Basic Research, 2020, 257, 2000344.	1.5	3
156	Intrinsic viscuit probability distribution functions for transport coefficients of liquids and solids. Journal of Chemical Physics, 2022, 156, 124501.	3.0	3
157	Continuum Percolation of <i>2D </i> and 3 <i>D </i> Simple Fluids. Molecular Simulation, 1990, 5, 329-343.	2.0	2
158	Partial Coordination Numbers of Square-Well Binary Fluid Mixtures. Physics and Chemistry of Liquids, 1992, 24, 205-221.	1.2	2
159	Thermodynamic properties of planar squareâ€well dumbbell fluids: Monte Carlo simulations and perturbation theory. Journal of Chemical Physics, 1993, 99, 9882-9889.	3.0	2
160	Lattice Models of Growth of Aligned Dipolar Fluids. Physics and Chemistry of Liquids, 1996, 31, 109-125.	1.2	2
161	Monte Carlo simulations of fluids whose particles interact with a logarithmic potential. Journal of Chemical Physics, 2008, 128, 134503.	3.0	2
162	Equilibrium fluctuations of liquid state static properties in a subvolume by molecular dynamics. Journal of Chemical Physics, 2016, 145, 104504.	3.0	2

#	Article	IF	CITATIONS
163	Nanowire Stretching by Nonâ€Equilibrium Molecular Dynamics. Physica Status Solidi (B): Basic Research, 2017, 254, 1600861.	1.5	2
164	Reentrant melting and multiple occupancy crystals of bounded potentials: Simple theory and direct observation by molecular dynamics simulations. Physical Review E, 2020, 102, 042102.	2.1	2
165	Simulating macroscopic flows. Nature, 1987, 329, 390-391.	27.8	1
166	Clustering of Particles in Colloidal and Molecular Fluids. Physics and Chemistry of Liquids, 1989, 19, 125-143.	1.2	1
167	Brownian Dynamics Simulations of Model Near-Hard-Sphere Suspensions. Physics and Chemistry of Liquids, 1993, 26, 153-160.	1.2	1
168	Thermodynamic and mechanical stability of many-body systems interacting with coarse-grained bounded potentials. Physica Status Solidi (B): Basic Research, 2008, 245, 2415-2421.	1.5	1
169	Nonâ€Equilibrium Phase Behavior of Confined Molecular Films at Low Shear Rates. Physica Status Solidi (B): Basic Research, 2017, 254, 1600862.	1.5	1
170	Bounded inverse power potentials: Isomorphism and isosbestic points. Journal of Chemical Physics, 2019, 150, 144504.	3.0	1
171	Experiment and computer simulation of particulate suspensions under shear flow. Lubrication Science, 1994, 6, 327-335.	2.1	0
172	Physical Properties of Model Colloidal Liquids Using Brownian Dynamics Simulation. Physics and Chemistry of Liquids, 1995, 30, 113-134.	1.2	0
173	Binary mixtures of asymmetric continuous charge distributions: Molecular dynamics simulations and integral equations. Journal of Chemical Physics, 2015, 142, 074904.	3.0	0

174 10.1063/1.5095501.1., 2019, , .