ZhiGuang Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4520458/publications.pdf Version: 2024-02-01

ZHICHANC CHO

#	Article	IF	CITATIONS
1	Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chemical Society Reviews, 2015, 44, 336-361.	38.1	1,359
2	Superhydrophobic surfaces: From natural to biomimetic to functional. Journal of Colloid and Interface Science, 2011, 353, 335-355.	9.4	860
3	Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Science, 2007, 172, 1103-1112.	3.6	487
4	Stable Biomimetic Super-Hydrophobic Engineering Materials. Journal of the American Chemical Society, 2005, 127, 15670-15671.	13.7	479
5	Superhydrophobic nanocoatings: from materials to fabrications and to applications. Nanoscale, 2015, 7, 5922-5946.	5.6	322
6	Methodology for Robust Superhydrophobic Fabrics and Sponges from In Situ Growth of Transition Metal/Metal Oxide Nanocrystals with Thiol Modification and Their Applications in Oil/Water Separation. ACS Applied Materials & Interfaces, 2013, 5, 1827-1839.	8.0	251
7	Underwater superoleophobic graphene oxide coated meshes for the separation of oil and water. Chemical Communications, 2014, 50, 5586.	4.1	239
8	Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications. Nanoscale, 2017, 9, 3338-3366.	5.6	232
9	Stable superhydrophobic coatings from thiol-ligand nanocrystals and their application in oil/water separation. Journal of Materials Chemistry, 2012, 22, 9774.	6.7	231
10	Biomimetic superoleophobic surfaces: focusing on their fabrication and applications. Journal of Materials Chemistry A, 2015, 3, 1811-1827.	10.3	214
11	Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature. Nanoscale Horizons, 2019, 4, 52-76.	8.0	213
12	Biomimetic transparent and superhydrophobic coatings: from nature and beyond nature. Chemical Communications, 2015, 51, 1775-1794.	4.1	209
13	Inorganic Adhesives for Robust Superwetting Surfaces. ACS Nano, 2017, 11, 1113-1119.	14.6	204
14	Adhesion behaviors on superhydrophobic surfaces. Chemical Communications, 2014, 50, 3900.	4.1	202
15	Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces. Journal of Materials Chemistry A, 2018, 6, 13549-13581.	10.3	194
16	Designing novel superwetting surfaces for high-efficiency oil–water separation: design principles, opportunities, trends and challenges. Journal of Materials Chemistry A, 2020, 8, 16831-16853.	10.3	194
17	Biomimetic water-collecting materials inspired by nature. Chemical Communications, 2016, 52, 3863-3879.	4.1	184
18	Advances in the theory of superhydrophobic surfaces. Journal of Materials Chemistry, 2012, 22, 20112.	6.7	177

#	Article	IF	CITATIONS
19	Recent progress of double-structural and functional materials with special wettability. Journal of Materials Chemistry, 2012, 22, 799-815.	6.7	175
20	pH-responsive bidirectional oil–water separation material. Chemical Communications, 2013, 49, 9416.	4.1	170
21	Recent advances in biomimetic thin membranes applied in emulsified oil/water separation. Journal of Materials Chemistry A, 2016, 4, 15749-15770.	10.3	168
22	Flourishing Bioinspired Antifogging Materials with Superwettability: Progresses and Challenges. Advanced Materials, 2018, 30, e1704652.	21.0	161
23	Superwetting Janus membranes: focusing on unidirectional transport behaviors and multiple applications. Journal of Materials Chemistry A, 2019, 7, 12921-12950.	10.3	155
24	A Robust Epoxy Resins @ Stearic Acid-Mg(OH) ₂ Micronanosheet Superhydrophobic Omnipotent Protective Coating for Real-Life Applications. ACS Applied Materials & Interfaces, 2016, 8, 16511-16520.	8.0	154
25	Subtractive manufacturing of stable hierarchical micro-nano structures on AA5052 sheet with enhanced water repellence and durable corrosion resistance. Materials and Design, 2019, 183, 108152.	7.0	149
26	Review on the recent development of durable superhydrophobic materials for practical applications. Nanoscale, 2021, 13, 11734-11764.	5.6	148
27	Inspired smart materials with external stimuli responsive wettability: a review. RSC Advances, 2016, 6, 36623-36641.	3.6	136
28	Robust micro-nanoscale flowerlike ZnO/epoxy resin superhydrophobic coating with rapid healing ability. Chemical Engineering Journal, 2017, 313, 1152-1159.	12.7	136
29	Biomimetic super durable and stable surfaces with superhydrophobicity. Journal of Materials Chemistry A, 2018, 6, 16731-16768.	10.3	136
30	Biomimetic Multi-Functional Superamphiphobic FOTS-TiO ₂ Particles beyond Lotus Leaf. ACS Applied Materials & Interfaces, 2016, 8, 27188-27198.	8.0	131
31	Bioinspired surfaces with wettability for antifouling application. Nanoscale, 2019, 11, 22636-22663.	5.6	130
32	Inorganic adhesives for robust, self-healing, superhydrophobic surfaces. Journal of Materials Chemistry A, 2017, 5, 19297-19305.	10.3	128
33	Effects of system parameters on making aluminum alloy lotus. Journal of Colloid and Interface Science, 2006, 303, 298-305.	9.4	124
34	The chitosan hydrogels: from structure to function. New Journal of Chemistry, 2018, 42, 17162-17180.	2.8	113
35	Biomimetic photonic materials with tunable structural colors. Journal of Colloid and Interface Science, 2013, 406, 1-17.	9.4	106
36	Simple one-pot approach toward robust and boiling-water resistant superhydrophobic cotton fabric and the application in oil/water separation. Journal of Materials Chemistry A, 2017, 5, 21866-21874.	10.3	106

#	Article	IF	CITATIONS
37	Wettability of graphene: from influencing factors and reversible conversions to potential applications. Nanoscale Horizons, 2019, 4, 339-364.	8.0	103
38	lcephobic/anti-icing properties of superhydrophobic surfaces. Advances in Colloid and Interface Science, 2022, 304, 102658.	14.7	103
39	Interfacial effects of superhydrophobic plant surfaces: A review. Journal of Bionic Engineering, 2014, 11, 325-345.	5.0	102
40	Transparent slippery liquid-infused nanoparticulate coatings. Chemical Engineering Journal, 2018, 337, 462-470.	12.7	98
41	Fabrication of stable and durable superhydrophobic surface on copper substrates for oil–water separation and ice-over delay. Journal of Colloid and Interface Science, 2016, 466, 36-43.	9.4	96
42	What are the design principles, from the choice of lubricants and structures to the preparation method, for a stable slippery lubricant-infused porous surface?. Materials Horizons, 2020, 7, 1697-1726.	12.2	96
43	Stable and self-healing superhydrophobic MnO 2 @fabrics: Applications in self-cleaning, oil/water separation and wear resistance. Journal of Colloid and Interface Science, 2017, 503, 124-130.	9.4	95
44	Stable superhydrophobic and superoleophilic soft porous materials for oil/water separation. RSC Advances, 2013, 3, 16469.	3.6	93
45	A multifunctional transparent superhydrophobic gel nanocoating with self-healing properties. Chemical Communications, 2015, 51, 16794-16797.	4.1	93
46	A study on the fabrication of porous PVDF membranes by in-situ elimination and their applications in separating oil/water mixtures and nano-emulsions. Journal of Membrane Science, 2016, 520, 760-768.	8.2	92
47	Polyaniline coated membranes for effective separation of oil-in-water emulsions. Journal of Colloid and Interface Science, 2016, 467, 261-270.	9.4	91
48	Mechanical stability, corrosion resistance of superhydrophobic steel and repairable durability of its slippery surface. Journal of Colloid and Interface Science, 2018, 512, 239-248.	9.4	91
49	Bioinspired surfaces with wettability: biomolecule adhesion behaviors. Biomaterials Science, 2020, 8, 1502-1535.	5.4	89
50	Understanding the separations of oil/water mixtures from immiscible to emulsions on super-wettable surfaces. Journal of Bionic Engineering, 2016, 13, 1-29.	5.0	88
51	A robust and stretchable superhydrophobic PDMS/PVDF@KNFs membrane for oil/water separation and flame retardancy. Nanoscale, 2018, 10, 6695-6703.	5.6	85
52	Underoil superhydrophilic surfaces: water adsorption in metal–organic frameworks. Journal of Materials Chemistry A, 2018, 6, 1692-1699.	10.3	84
53	High-efficiency water collection on biomimetic material with superwettable patterns. Chemical Communications, 2016, 52, 12415-12417.	4.1	82
54	Multifunctional hollow superhydrophobic SiO2 microspheres with robust and self-cleaning and separation of oil/water emulsions properties. Journal of Colloid and Interface Science, 2017, 494, 54-63.	9.4	82

#	Article	IF	CITATIONS
55	Stable Superwetting Meshes for On-Demand Separation of Immiscible Oil/Water Mixtures and Emulsions. Langmuir, 2017, 33, 3702-3710.	3.5	82
56	An alternating nanoscale (hydrophilic–hydrophobic)/hydrophilic Janus cooperative copper mesh fabricated by a simple liquidus modification for efficient fog harvesting. Journal of Materials Chemistry A, 2019, 7, 8405-8413.	10.3	82
57	Sprayed hieratical biomimetic superhydrophilic-superhydrophobic surface for efficient fog harvesting. Chemical Engineering Journal, 2020, 388, 124283.	12.7	82
58	Biomimetic superhydrophobic surfaces with transition metals and their oxides: A review. Journal of Bionic Engineering, 2017, 14, 401-439.	5.0	81
59	Spontaneous directional transportations of water droplets on surfaces driven by gradient structures. Nanoscale, 2018, 10, 13814-13831.	5.6	81
60	Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing. Applied Physics Letters, 2013, 103, .	3.3	80
61	Superwetting Materials of Oil–Water Emulsion Separation. Chemistry Letters, 2015, 44, 874-883.	1.3	80
62	A novel polyacrylonitrile membrane with a high flux for emulsified oil/water separation. Separation and Purification Technology, 2017, 184, 72-78.	7.9	80
63	Bioinspired Superhydrophobic Fe ₃ O ₄ @Polydopamine@Ag Hybrid Nanoparticles for Liquid Marble and Oil Spill. Advanced Materials Interfaces, 2015, 2, 1500234.	3.7	76
64	Hybrid engineered materials with high water-collecting efficiency inspired by Namib Desert beetles. Chemical Communications, 2016, 52, 6809-6812.	4.1	76
65	Outmatching superhydrophobicity: bio-inspired re-entrant curvature for mighty superamphiphobicity in air. Journal of Materials Chemistry A, 2017, 5, 14480-14507.	10.3	75
66	Electrochemical route to prepare polyaniline-coated meshes with controllable pore size for switchable emulsion separation. Chemical Engineering Journal, 2016, 304, 115-120.	12.7	74
67	Understanding how surface chemistry and topography enhance fog harvesting based on the superwetting surface with patterned hemispherical bulges. Journal of Colloid and Interface Science, 2018, 525, 234-242.	9.4	74
68	A comparison between superhydrophobic surfaces (SHS) and slippery liquid-infused porous surfaces (SLIPS) in application. Nanoscale, 2020, 12, 22398-22424.	5.6	72
69	Insitu growth of durable superhydrophobic Mg–Al layered double hydroxides nanoplatelets on aluminum alloys for corrosion resistance. Journal of Alloys and Compounds, 2018, 767, 382-391.	5.5	69
70	Nonflammable superhydrophobic paper with biomimetic layered structure exhibiting boiling-water resistance and repairable properties for emulsion separation. Journal of Materials Chemistry A, 2018, 6, 7042-7052.	10.3	67
71	Lubricant-infused slippery surfaces: Facile fabrication, unique liquid repellence and antireflective properties. Journal of Colloid and Interface Science, 2019, 536, 507-515.	9.4	67
72	A simple route to transform normal hydrophilic cloth into a superhydrophobic–superhydrophilic hybrid surface. Journal of Materials Chemistry A, 2014, 2, 7845-7852.	10.3	63

#	Article	IF	CITATIONS
73	Facile modification of NH2-MIL-125(Ti) to enhance water stability for efficient adsorptive removal of crystal violet from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 541, 58-67.	4.7	62
74	Liquid infused surfaces with anti-icing properties. Nanoscale, 2019, 11, 22615-22635.	5.6	61
75	Recent advances in atmosphere water harvesting: Design principle, materials, devices, and applications. Nano Today, 2021, 40, 101283.	11.9	61
76	Multifunctional superamphiphobic SiO2 coating for crude oil transportation. Chemical Engineering Journal, 2018, 334, 1584-1593.	12.7	59
77	Asymmetric superwetting stainless steel meshes for on-demand and highly effective oil-water emulsion separation. Separation and Purification Technology, 2021, 273, 118994.	7.9	58
78	Creation of a multifunctional superhydrophobic coating for composite insulators. Chemical Engineering Journal, 2018, 352, 774-781.	12.7	57
79	Dual superlyophobic surfaces with superhydrophobicity and underwater superoleophobicity. Journal of Materials Chemistry A, 2018, 6, 11682-11687.	10.3	56
80	Graphene oxide–iron complex: synthesis, characterization and visible-light-driven photocatalysis. Journal of Materials Chemistry A, 2013, 1, 644-650.	10.3	55
81	An all-water-based system for robust superhydrophobic surfaces. Journal of Colloid and Interface Science, 2018, 519, 130-136.	9.4	55
82	A facile approach to achieve bioinspired PDMS@Fe ₃ O ₄ fabric with switchable wettability for liquid transport and water collection. Journal of Materials Chemistry A, 2018, 6, 22741-22748.	10.3	53
83	Fabrications and Applications of Slippery Liquid-infused Porous Surfaces Inspired from Nature: A Review. Journal of Bionic Engineering, 2019, 16, 769-793.	5.0	53
84	Superhydrophobic materials used for anti-icing Theory, application, and development. IScience, 2021, 24, 103357.	4.1	52
85	The wettability of gas bubbles: from macro behavior to nano structures to applications. Nanoscale, 2018, 10, 19659-19672.	5.6	50
86	Durable Lubricant-Impregnated Surfaces for Water Collection under Extremely Severe Working Conditions. ACS Applied Materials & Interfaces, 2019, 11, 35949-35958.	8.0	49
87	A scalable, self-healing and hot liquid repelling superamphiphobic spray coating with remarkable mechanochemical robustness for real-life applications. Nanoscale, 2019, 11, 13853-13862.	5.6	49
88	Superhydrophobic sand: a hope for desert water storage and transportation projects. Journal of Materials Chemistry A, 2017, 5, 6416-6423.	10.3	48
89	Triple-network hydrogels with high strength, low friction and self-healing by chemical-physical crosslinking. Journal of Colloid and Interface Science, 2019, 556, 549-556.	9.4	48
90	Tomato-lotus inspired edible superhydrophobic artificial lotus leaf. Chemical Engineering Journal, 2020, 400, 125883.	12.7	48

#	Article	IF	CITATIONS
91	Multibioinspired Janus membranes with superwettable performance for unidirectional transportation and fog collection. Chemical Engineering Journal, 2021, 404, 126515.	12.7	48
92	Natural polysaccharide-based aerogels and their applications in oil–water separations: a review. Journal of Materials Chemistry A, 2022, 10, 8129-8158.	10.3	48
93	A robust transparent and anti-fingerprint superhydrophobic film. Chemical Communications, 2013, 49, 7310.	4.1	47
94	Versatile superamphiphobic cotton fabrics fabricated by coating with SiO 2 /FOTS. Applied Surface Science, 2017, 426, 271-278.	6.1	47
95	Graphene and its derivative composite materials with special wettability: Potential application in oil-water separation. Carbon, 2021, 172, 647-681.	10.3	47
96	Design of underwater superoleophobic TiO2 coatings with additional photo-induced self-cleaning properties by one-step route bio-inspired from fish scales. Applied Physics Letters, 2014, 104, .	3.3	46
97	Eco-friendly functionalized superhydrophobic recycled paper with enhanced flame-retardancy. Journal of Colloid and Interface Science, 2016, 477, 74-82.	9.4	46
98	Durable superhydrophobic and underwater superoleophobic cotton fabrics growing zinc oxide nanoarrays for application in separation of heavy/light oil and water mixtures as need. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 115-126.	4.7	46
99	A fog-collecting surface mimicking the Namib beetle: its water collection efficiency and influencing factors. Nanoscale, 2020, 12, 6921-6936.	5.6	46
100	pH-responsive smart fabrics with controllable wettability in different surroundings. RSC Advances, 2014, 4, 14684.	3.6	45
101	Green fabrication of coloured superhydrophobic paper from native cotton cellulose. Journal of Colloid and Interface Science, 2017, 497, 284-289.	9.4	45
102	Hierarchical fibers for water collection inspired by spider silk. Nanoscale, 2019, 11, 15448-15463.	5.6	45
103	Stable underwater superoleophobic conductive polymer coated meshes for high-efficiency oil–water separation. RSC Advances, 2015, 5, 33077-33082.	3.6	44
104	Effect of surface topography and wettability on the Leidenfrost effect. Nanoscale, 2017, 9, 6219-6236.	5.6	44
105	Fabrication of biocompatible super stable lubricant-immobilized slippery surfaces by grafting a polydimethylsiloxane brush: excellent boiling water resistance, hot liquid repellency and long-term slippery stability. Nanoscale, 2019, 11, 8870-8881.	5.6	44
106	Novel and cutting-edge applications for a solvent-responsive superoleophobic–superhydrophilic surface: Water-infused omniphobic surface and separating organic liquid mixtures. Chemical Engineering Journal, 2020, 381, 122629.	12.7	43
107	Excellent fog droplets collector via an extremely stable hybrid hydrophobic-hydrophilic surface and Janus copper foam integrative system with hierarchical micro/nanostructures. Journal of Colloid and Interface Science, 2020, 561, 730-740.	9.4	43
108	Flexible 3D porous superhydrophobic composites for oil-water separation and organic solvent detection. Materials and Design, 2020, 196, 109144.	7.0	43

#	Article	IF	CITATIONS
109	Efficient Fog Harvesting Based on 1D Copper Wire Inspired by the Plant Pitaya. Langmuir, 2018, 34, 15259-15267.	3.5	42
110	Surface topographies of biomimetic superamphiphobic materials: design criteria, fabrication and performance. Advances in Colloid and Interface Science, 2019, 269, 87-121.	14.7	41
111	Bioinspired silica-based superhydrophobic materials. Applied Surface Science, 2017, 426, 1-18.	6.1	40
112	A highly fluorinated SiO ₂ particle assembled, durable superhydrophobic and superoleophobic coating for both hard and soft materials. Nanoscale, 2019, 11, 18338-18346.	5.6	40
113	Bioinspired surfaces with special micro-structures and wettability for drag reduction: which surface design will be a better choice?. Nanoscale, 2021, 13, 3463-3482.	5.6	40
114	Modifier-free fabrication of durable and multifunctional superhydrophobic paper with thermostability and anti-microbial property. Chemical Engineering Journal, 2018, 346, 94-103.	12.7	39
115	Onâ€Đemand Coalescence and Splitting of Liquid Marbles and Their Bioapplications. Advanced Science, 2019, 6, 1802033.	11.2	39
116	Optimal Design of a Fog Collector: Unidirectional Water Transport on a System Integrated by Conical Copper Needles with Gradient Wettability and Hydrophilic Slippery Rough Surfaces. Langmuir, 2020, 36, 6801-6810.	3.5	39
117	Janus Membranes with Asymmetric Wettability Applied in Oil/Water Emulsion Separations. Advanced Sustainable Systems, 2021, 5, 2000253.	5.3	39
118	Design of a Venation-like Patterned Surface with Hybrid Wettability for Highly Efficient Fog Harvesting. Nano Letters, 2022, 22, 3104-3111.	9.1	39
119	Why so strong for the lotus leaf?. Applied Physics Letters, 2008, 93, .	3.3	38
120	Facile Fabrication of Multifunctional Hybrid Silk Fabrics with Controllable Surface Wettability and Laundering Durability. ACS Applied Materials & Interfaces, 2016, 8, 5653-5660.	8.0	38
121	Biomimetic self-slippery and transferable transparent lubricant-infused functional surfaces. Nanoscale, 2018, 10, 19879-19889.	5.6	38
122	Robust Mg(OH)2/epoxy resin superhydrophobic coating applied to composite insulators. Applied Surface Science, 2019, 466, 126-132.	6.1	38
123	Programming Multiphase Media Superwetting States in the Oil–Water–Air System: Evolutions in Hydrophobic–Hydrophilic Surface Heterogeneous Chemistry. Advanced Materials, 2020, 32, e2004875.	21.0	38
124	Engineering NiO sensitive materials and its ultra-selective detection of benzaldehyde. Journal of Colloid and Interface Science, 2016, 467, 192-202.	9.4	36
125	Biomimetic polymeric superamphiphobic surfaces: their fabrication and applications. Chemical Communications, 2019, 55, 10820-10843.	4.1	36
126	Bio-inspired encapsulation and functionalization of living cells with artificial shells. Colloids and Surfaces B: Biointerfaces, 2014, 113, 483-500.	5.0	35

#	Article	IF	CITATIONS
127	Superhydrophobic Plant Leaves: The Variation in Surface Morphologies and Wettability during the Vegetation Period. Langmuir, 2019, 35, 1047-1053.	3.5	35
128	Superomniphobic Silk Fibroin/Ag Nanowires Membrane for Flexible and Transparent Electronic Sensor. ACS Applied Materials & 2010; 1020, 12, 10039-10049.	8.0	35
129	Bio-inspired Fog Harvesting Materials: Basic Research and Bionic Potential Applications. Journal of Bionic Engineering, 2021, 18, 501-533.	5.0	35
130	Recent advances in slippery liquid-infused surfaces with unique properties inspired by nature. Bio-Design and Manufacturing, 2021, 4, 506-525.	7.7	35
131	Iron Impurities as the Active Sites for Peroxidase-like Catalytic Reaction on Graphene and Its Derivatives. ACS Applied Materials & amp; Interfaces, 2015, 7, 15403-15413.	8.0	34
132	Robust superhydrophobic tungsten oxide coatings with photochromism and UV durability properties. Applied Surface Science, 2016, 387, 412-418.	6.1	34
133	Bioinspired fish-scale-like stainless steel surfaces with robust underwater anti-crude-oil-fouling and self-cleaning properties. Separation and Purification Technology, 2018, 202, 111-118.	7.9	34
134	Stable Janus superhydrophilic/hydrophobic nickel foam for directional water transport. Journal of Colloid and Interface Science, 2018, 509, 346-352.	9.4	34
135	Comparison of the enhanced gas sensing properties of tin dioxide samples doped with different catalytic transition elements. Journal of Colloid and Interface Science, 2015, 448, 265-274.	9.4	33
136	Anisotropic wetting properties on various shape of parallel grooved microstructure. Journal of Colloid and Interface Science, 2015, 453, 142-150.	9.4	33
137	Computational investigation of the lubrication behaviors of dioxides and disulfides of molybdenum and tungsten in vacuum. Friction, 2017, 5, 23-31.	6.4	33
138	A facile method to mussel-inspired superhydrophobic thiol-textiles@polydopamine for oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554, 253-260.	4.7	33
139	Robust and self-repairing superamphiphobic coating from all-water-based spray. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 645-651.	4.7	33
140	Drop/bubble transportation and controllable manipulation on patterned slippery lubricant infused surfaces with tunable wettability. Soft Matter, 2019, 15, 6803-6810.	2.7	33
141	Overview of the development of slippery surfaces: Lubricants from presence to absence. Advances in Colloid and Interface Science, 2022, 301, 102602.	14.7	33
142	Thermo-responsive hollow silica microgels with controlled drug release properties. Colloids and Surfaces B: Biointerfaces, 2013, 111, 7-14.	5.0	32
143	Well-dispersed PEDOT:PSS/graphene nanocomposites synthesized by in situ polymerization as counter electrodes for dye-sensitized solar cells. Journal of Materials Science, 2015, 50, 2148-2157.	3.7	32
144	Ag nanoparticles loading of polypyrrole-coated superwetting mesh for on-demand separation of oil-water mixtures and catalytic reduction of aromatic dyes. Journal of Colloid and Interface Science, 2018, 527, 187-194.	9.4	32

#	Article	IF	CITATIONS
145	A combined structural and wettability gradient surface for directional droplet transport and efficient fog collection. Journal of Colloid and Interface Science, 2021, 604, 526-536.	9.4	32
146	Fabrication of functional superhydrophobic engineering materials via an extremely rapid and simple route. Chemical Communications, 2015, 51, 6493-6495.	4.1	31
147	Simple fabrication of a multifunctional inorganic paper with high efficiency separations for both liquids and particles. Journal of Materials Chemistry A, 2018, 6, 21524-21531.	10.3	31
148	Fog collection behavior of bionic surface and large fog collector: A review. Advances in Colloid and Interface Science, 2022, 300, 102583.	14.7	31
149	Characterization of Micro-Morphology and Wettability of Lotus Leaf, Waterlily Leaf and Biomimetic ZnO Surface. Journal of Bionic Engineering, 2015, 12, 88-97.	5.0	30
150	Design and understanding of a high-performance gas sensing material based on copper oxide nanowires exfoliated from a copper mesh substrate. Journal of Materials Chemistry A, 2015, 3, 20477-20481.	10.3	30
151	Bio-inspired one-pot route to prepare robust and repairable micro-nanoscale superhydrophobic coatings. Journal of Colloid and Interface Science, 2017, 498, 182-193.	9.4	30
152	Biomimetic superwettable materials with structural colours. Chemical Communications, 2017, 53, 12990-13011.	4.1	30
153	Organic Media Superwettability: On-Demand Liquid Separation by Controlling Surface Chemistry. ACS Applied Materials & Interfaces, 2018, 10, 37634-37642.	8.0	30
154	Hybrid Hydrophilic–Hydrophobic CuO@TiO ₂ -Coated Copper Mesh for Efficient Water Harvesting. Langmuir, 2020, 36, 64-73.	3.5	30
155	A robust and repairable copper-based superhydrophobic microfiltration membrane for high-efficiency water-in-oil emulsion separation. Separation and Purification Technology, 2021, 256, 117751.	7.9	30
156	Reed leaf-inspired anisotropic slippery lubricant-infused surface for water collection and bubble transportation. Chemical Engineering Journal, 2021, 411, 128495.	12.7	30
157	WO3-based slippery coatings with long-term stability for efficient fog harvesting. Journal of Colloid and Interface Science, 2021, 591, 418-428.	9.4	30
158	Superhydrophobic sand grains structured with aligned Cu(OH) 2 nano-needles for efficient oily water treatment. Materials and Design, 2017, 135, 377-384.	7.0	29
159	How does substrate roughness affect the service life of a superhydrophobic coating?. Applied Surface Science, 2018, 441, 491-499.	6.1	29
160	A facile and effective method to improve the dispersibility of WS2 nanosheets in PAO8 for the tribological performances. Tribology International, 2018, 118, 60-70.	5.9	29
161	Novel fabrication of polymer/carbon nanotube composite coated Janus paper for humidity stress sensor. Journal of Colloid and Interface Science, 2018, 532, 517-526.	9.4	29
162	Insitu growth of ZIF-8 on Co Al layered double hydroxide/carbon fiber composites for highly efficient absorptive removal of hexavalent chromium from aqueous solutions. Applied Clay Science, 2019, 175, 115-123.	5.2	29

#	Article	IF	CITATIONS
163	Water deteriorates lubricating oils: removal of water in lubricating oils using a robust superhydrophobic membrane. Nanoscale, 2020, 12, 11703-11710.	5.6	29
164	Facile Fabrication of Superhydrophobic and Underwater Superoleophobic Coatings. ACS Applied Nano Materials, 2018, 1, 4894-4899.	5.0	28
165	Highly fluorinated F-APP-TiO2 particle with hierarchical core-shell structure and its application in multifunctional superamphiphobic surface: Mechanical robustness, self-recovery and flame retardancy. Journal of Colloid and Interface Science, 2020, 560, 777-786.	9.4	28
166	An ionic liquid-infused slippery surface for temperature stability, shear resistance and corrosion resistance. Journal of Materials Chemistry A, 2020, 8, 24075-24085.	10.3	28
167	Robust, heat-resistant and multifunctional superhydrophobic coating of carbon microflowers with molybdenum trioxide nanoparticles. Journal of Colloid and Interface Science, 2017, 506, 649-658.	9.4	27
168	A hybrid bioinspired fiber trichome with special wettability for water collection, friction reduction and self-cleaning. Nanoscale, 2019, 11, 11774-11781.	5.6	27
169	A facile coating with water-repellent and flame-retardant properties on cotton fabric. New Journal of Chemistry, 2019, 43, 10183-10189.	2.8	27
170	Preparation and performance testing of superhydrophobic flame retardant cotton fabric. New Journal of Chemistry, 2019, 43, 5839-5848.	2.8	27
171	Facile fabrication of ultraviolet light cured fluorinated polymer layer for smart superhydrophobic surface with excellent durability and flame retardancy. Journal of Colloid and Interface Science, 2019, 547, 153-161.	9.4	27
172	Conductive and transparent superhydrophobic films on various substrates by <i>in situ</i> deposition. Applied Physics Letters, 2013, 102, .	3.3	26
173	Superhydrophobic surfaces based on polypyrrole with corrosion resistance and the separation of oil/water mixture properties. RSC Advances, 2015, 5, 107880-107888.	3.6	26
174	pH-Manipulated Underwater–Oil Adhesion Wettability Behavior on the Micro/Nanoscale Semicircular Structure and Related Thermodynamic Analysis. ACS Applied Materials & Interfaces, 2015, 7, 10641-10649.	8.0	26
175	Superhydrophobic and slippery cotton fabrics with robust nanolayers for stable wettability, anti-fouling and anti-icing properties. New Journal of Chemistry, 2019, 43, 16656-16663.	2.8	26
176	Robust silicon dioxide @ epoxy resin micronanosheet superhydrophobic omnipotent protective coating for applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 550, 9-19.	4.7	25
177	An easy preparation of photo-response TiO ₂ @copper wire mesh with quick on/off switchable superwetting for high efficiency oil–water separation. New Journal of Chemistry, 2018, 42, 17563-17573.	2.8	25
178	Kevlar fiber-reinforced multifunctional superhydrophobic paper for oil–water separation and liquid transportation. New Journal of Chemistry, 2019, 43, 15453-15461.	2.8	25
179	Wear-resistant and robust superamphiphobic coatings with hierarchical TiO ₂ /SiO ₂ composite particles and inorganic adhesives. New Journal of Chemistry, 2020, 44, 1194-1203.	2.8	25
180	Bioinspired Edible Lubricant-Infused Surface with Liquid Residue Reduction Properties. Research, 2019, 2019, 1649427.	5.7	25

#	Article	IF	CITATIONS
181	A Superhydrophobic Copper Mesh with Microrod Structure for Oil–Water Separation Inspired from Ramee Leaf. Chemistry Letters, 2014, 43, 1645-1647.	1.3	24
182	Low cost and non-fluoride flowerlike superhydrophobic particles fabricated for both emulsions separation and dyes adsorption. Journal of Colloid and Interface Science, 2017, 507, 421-428.	9.4	24
183	Characteristics of binary WO3@CuO and ternary WO3@PDA@CuO based on impressive sensing acetone odor. Journal of Colloid and Interface Science, 2018, 524, 32-41.	9.4	24
184	Facile synthesis of superhydrophobic three-metal-component layered double hydroxide films on aluminum foils for highly improved corrosion inhibition. New Journal of Chemistry, 2019, 43, 2289-2298.	2.8	24
185	Controllable preparation of multiple superantiwetting surfaces: From dual to quadruple superlyophobicity. Chemical Engineering Journal, 2019, 369, 463-469.	12.7	24
186	Robust Superhydrophobic Composite Featuring Three-Dimensional Porous Metal Rubber with an Embedded Carbon Nanofiber Network for Emulsion Separation. Industrial & Engineering Chemistry Research, 2020, 59, 6172-6182.	3.7	24
187	Anisotropic Janus materials: from micro-/nanostructures to applications. Nanoscale, 2021, 13, 18839-18864.	5.6	24
188	Bubble shapes and their changes on slippery surfaces during directional transportation. Journal of Colloid and Interface Science, 2019, 552, 84-90.	9.4	23
189	Bioinspired materials for water-harvesting: focusing on microstructure designs and the improvement of sustainability. Materials Advances, 2020, 1, 2592-2613.	5.4	23
190	A robust surface with superhydrophobicity and underwater superoleophobicity for on-demand oil/water separation. Nanoscale, 2021, 13, 15334-15342.	5.6	23
191	Micromechanics of Lotus Fibers. Chemistry Letters, 2014, 43, 1137-1139.	1.3	22
192	Energy-effective superhydrophobic nanocoating based on recycled eggshell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568, 20-28.	4.7	22
193	Near-bulge oil meniscus-induced migration and condensation of droplets for water collection: Energy saving, generalization and recyclability. Chemical Engineering Journal, 2021, 417, 129215.	12.7	22
194	External-field-induced directional droplet transport: A review. Advances in Colloid and Interface Science, 2021, 295, 102502.	14.7	22
195	Optimal design of superhydrophobic surfaces using a paraboloid microtexture. Journal of Colloid and Interface Science, 2014, 436, 19-28.	9.4	21
196	Tuning SnO 2 architectures with unitary or composite microstructure for the application of gas sensors. Journal of Colloid and Interface Science, 2016, 462, 140-147.	9.4	21
197	Underwater manipulation of oil droplets and bubbles on superhydrophobic surfaces <i>via</i> switchable adhesion. Chemical Communications, 2019, 55, 3394-3397.	4.1	21
198	Facile fabrication of superhydrophobic filter paper with high water adhesion. Materials Letters, 2019, 236, 732-735.	2.6	21

#	Article	IF	CITATIONS
199	Effective sugar-derived organic gelator for three different types of lubricant oils to improve tribological performance. Friction, 2020, 8, 1025-1038.	6.4	21
200	Facile Fabrication of Slippery Lubricant-Infused CuO-Coated Surfaces with Different Morphologies for Efficient Water Collection and Excellent Slippery Stability. Langmuir, 2020, 36, 8983-8992.	3.5	21
201	Durable mixed edible wax coating with stretching superhydrophobicity. Journal of Materials Chemistry A, 2021, 9, 1495-1499.	10.3	21
202	Biomimetic high-intensity superhydrophobic metal rubber with anti-corrosion property for industrial oil–water separation. New Journal of Chemistry, 2019, 43, 1894-1899.	2.8	20
203	An all superantiwetting surface in water–oil–air systems. Journal of Materials Chemistry A, 2019, 7, 6957-6962.	10.3	20
204	A paper-making transformation: from cellulose-based superwetting paper to biomimetic multifunctional inorganic paper. Journal of Materials Chemistry A, 2020, 8, 20238-20259.	10.3	20
205	All-Inorganic Perovskite Solar Cells with Tetrabutylammonium Acetate as the Buffer Layer between the SnO ₂ Electron Transport Film and CsPbl ₃ . ACS Applied Materials & Interfaces, 2022, 14, 5183-5193.	8.0	20
206	Adhesion behaviors on four special wettable surfaces: natural sources, mechanisms, fabrications and applications. Soft Matter, 2021, 17, 4895-4928.	2.7	19
207	Stable and Durable Conductive Superhydrophobic Coatings Prepared by Double-Layer Spray Coating Method. Nanomaterials, 2021, 11, 1506.	4.1	19
208	The gorgeous transformation of paper: from cellulose paper to inorganic paper to 2D paper materials with multifunctional properties. Journal of Materials Chemistry A, 2021, 10, 122-156.	10.3	19
209	Superhydrophobic Plant Leaves with Micro-line Structures: An Optimal Biomimetic Objective in Bionic Engineering. Journal of Bionic Engineering, 2018, 15, 851-858.	5.0	18
210	One-step fabrication of thermal resistant, corrosion resistant metal rubber for oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 573, 157-164.	4.7	18
211	New insights into unusual droplets: from mediating the wettability to manipulating the locomotion modes. Chemical Communications, 2020, 56, 14757-14788.	4.1	18
212	Wetting characterizations of oilseed rapes. Journal of Bionic Engineering, 2016, 13, 213-219.	5.0	17
213	Biomimetic photonic structures with tunable structural colours: From natural to biomimetic to applications. Journal of Bionic Engineering, 2018, 15, 1-33.	5.0	17
214	A study on the manufacture of Kevlar membrane modified by inorganic nanoparticles with universal applicability in separating diffident types of emulsions. Journal of Membrane Science, 2018, 563, 326-335.	8.2	17
215	A Facile Modifier-free Approach to Fabricate Antistatic Superhydrophobic Composite Coatings with Remarkable Thermal Stability and Corrosion Resistance. Journal of Bionic Engineering, 2020, 17, 421-435.	5.0	17
216	Fabrication of Co ₃ O ₄ hierarchically superhydrophobic boat-like hollow cages at the silicon surface. Nanotechnology, 2008, 19, 445608.	2.6	17

#	Article	IF	CITATIONS
217	Transparent and Superhydrophobic Co3O4 Microfiber Films. Chemistry Letters, 2014, 43, 100-101.	1.3	16
218	Bio-inspired writable multifunctional recycled paper with outer and inner uniform superhydrophobicity. RSC Advances, 2016, 6, 30776-30784.	3.6	16
219	Well Dispersive TiO ₂ Nanoparticles as Additives for Improving the Tribological Performance of Polyalphaolefin Gel Lubricant. Industrial & Engineering Chemistry Research, 2018, 57, 10379-10390.	3.7	16
220	Diving–floating locomotion induced by capturing and manipulating bubbles in an aqueous environment. Chemical Communications, 2018, 54, 11713-11716.	4.1	16
221	Tribological Properties of Molybdenum Disulfide and Helical Carbon Nanotube Modified Epoxy Resin. Materials, 2019, 12, 903.	2.9	16
222	Is superhydrophobicity equal to underwater superoleophilicity? Hydrophilic wetting defects on a superhydrophobic matrix with switchable superdewetting in both air and water. Journal of Materials Chemistry A, 2021, 9, 1471-1479.	10.3	16
223	Superwetting meshes with grass-like structures in the pores for highly efficient separation of oil-in-water emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 1030-1036.	4.7	15
224	Robust and muti-repaired superhydrophobic surfaces via one-step method on copper and aluminum alloys. Materials Letters, 2018, 213, 290-293.	2.6	15
225	Water super-repellent behavior of semicircular micro/nanostructured surfaces. Nanoscale, 2019, 11, 3725-3732.	5.6	15
226	Robust Superhydrophobic Membrane for Solving Water-Accelerated Fatigue of ZDDP-Containing Lubricating Oils. Langmuir, 2020, 36, 8560-8569.	3.5	15
227	Artificial Leaf for Switchable Droplet Manipulation. Langmuir, 2021, 37, 5745-5752.	3.5	15
228	Facile preparation of a superamphiphilic nitrocellulose membrane enabling on-demand and energy-efficient separation of oil/water mixtures and emulsions by prewetting. Biomaterials Science, 2021, 9, 5559-5568.	5.4	15
229	Self-assembly and tribological properties of a novel organic–inorganic nanocomposite film on silicon using polydopamine as the adhesion layer. RSC Advances, 2014, 4, 948-953.	3.6	14
230	Robust Superhydrophobic Zinc Oxide Film. Chemistry Letters, 2014, 43, 305-306.	1.3	14
231	Significant advantages of low-oxygen graphene nanosheets. Journal of Materials Chemistry A, 2015, 3, 9738-9744.	10.3	14
232	Biomimetic fog collection and its influencing factors. New Journal of Chemistry, 2020, 44, 20495-20519.	2.8	14
233	Mechano-adjusted anisotropic surface for manipulating water droplets. Chemical Engineering Journal, 2020, 395, 125110.	12.7	13
234	A solvent-responsive robust superwetting titanium dioxide-based metal rubber for oil-water separation and dye degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126179.	4.7	13

#	Article	IF	CITATIONS
235	PES asymmetric membrane for oil-in-water emulsion separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127096.	4.7	13
236	Formation mechanism of robust silver nanoparticle film with superhydrophobicity. Applied Physics Letters, 2010, 97, 243701.	3.3	12
237	A facile approach to transform stainless steel mesh into pH-responsive smart material. RSC Advances, 2015, 5, 13635-13642.	3.6	12
238	A two-step reduction method for synthesizing graphene nanocomposites with a low loading of well-dispersed platinum nanoparticles for use as counter electrodes in dye-sensitized solar cells. Journal of Materials Science, 2015, 50, 4412-4421.	3.7	12
239	Bio-inspired design of a transparent TiO2/SiO2 composite gel coating with adjustable wettability. Journal of Materials Science, 2016, 51, 7545-7553.	3.7	12
240	A dual underliquid superlyophobic surface in organic media for on-demand separation of immiscible organic liquid mixtures. Chemical Communications, 2019, 55, 13876-13879.	4.1	12
241	Robust multi-functional slippery surface with hollow ZnO nanotube structures. New Journal of Chemistry, 2020, 44, 15483-15491.	2.8	12
242	A CVD-Assisted Modification Approach for Preparing a Dual Superlyophobic Fabric with In-Air Superhydrophobicity and Underwater Superoleophobicity. Langmuir, 2020, 36, 5802-5808.	3.5	12
243	A bioinspired lubricant infused surface with transparency, hot liquid boiling resistance and long-term stability for food applications. New Journal of Chemistry, 2020, 44, 4529-4537.	2.8	12
244	Electricity-driven wettability with a low threshold voltage. Applied Physics Letters, 2011, 99, 082106.	3.3	11
245	Fabrication of durable self-repairing superhydrophobic fabrics via a fluorinate-free waterborne biomimetic silicification strategy. New Journal of Chemistry, 2019, 43, 5032-5038.	2.8	11
246	Mechanically durable and long-term repairable flexible lubricant-infused monomer for enhancing water collection efficiency by manipulating droplet coalescence and sliding. Nanoscale Advances, 2020, 2, 1473-1482.	4.6	11
247	Cellulose acetate/fiber paper composite membrane for separation of an oil-in-water emulsion. New Journal of Chemistry, 2021, 45, 12351-12355.	2.8	11
248	Multi-layer superhydrophobic nickel foam (NF) composite for highly efficient water-in-oil emulsion separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127299.	4.7	11
249	Superamphiphilic stainless steel mesh for oil/water emulsion separation on-demand. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127574.	4.7	11
250	Multifuctional Janus Materials for Rapid One-Way Water Transportation and Fog Collection. Langmuir, 2021, 37, 13778-13786.	3.5	11
251	Robust superhydrophobic and self-lubricating PTES-TiO ₂ @UHMWPE fabric and its tribological properties. RSC Advances, 2017, 7, 9169-9175.	3.6	10
252	Biomimetic multi-functional superhydrophobic stainless steel and copper meshes for water environment applications. New Journal of Chemistry, 2018, 42, 17625-17635.	2.8	10

#	Article	IF	CITATIONS
253	Facile preparation of a superamphiphobic fabric coating with hierarchical TiO ₂ particles. New Journal of Chemistry, 2020, 44, 19192-19200.	2.8	10
254	Fabrication of bioinspired edible liquid marble with phase transition and tunable water barrier property. Bio-Design and Manufacturing, 2021, 4, 889-901.	7.7	10
255	Lubricant-Infused Three-Dimensional Frame Composed of a Micro/Nanospinous Ball Cluster Structure with Salient Durability and Superior Fog Harvesting Capacity. ACS Applied Materials & Interfaces, 2021, 13, 46192-46201.	8.0	10
256	Bionic boron/siliconâ€modified phenolic resin system with multifunctional groups: synthesis, thermal properties and ablation mechanism. Biosurface and Biotribology, 2018, 4, 85-93.	1.5	9
257	Biomimetic Janus Paper with Controllable Swelling for Shape Memory and Energy Conversion. Journal of Bionic Engineering, 2019, 16, 1-12.	5.0	9
258	Water droplet transport on a nylon mesh with graded structures by facile PMMA spraying and etching process inspired by spider silk. Materials Letters, 2021, 291, 129546.	2.6	9
259	The intrigue of directional water collection interface: mechanisms and strategies. Journal of Materials Chemistry A, 2021, 9, 22729-22758.	10.3	9
260	Special Wettability Materials Inspired by Multiorganisms for Fog Collection. Advanced Materials Interfaces, 2022, 9, .	3.7	9
261	pH-Responsive Wettable Fabrics with Hierarchical Structures. Chemistry Letters, 2014, 43, 553-555.	1.3	8
262	Patterned Slippery Surface for Bubble Directional Transportation and Collection Fabricated via a Facile Method. Research, 2019, 2019, 9139535.	5.7	8
263	A special underoil superhydrophilic (UOSHL) membrane: Growing of copper phosphate (Cu3(PO4)2) nanosheet to achieve self-cleaning and efficient oil-water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 645, 128904.	4.7	8
264	Hybrid MWCNTs membrane with well-tunable wettability. Journal of Colloid and Interface Science, 2016, 484, 173-182.	9.4	7
265	Anti-solvent spin-coating for improving morphology of lead-free (CH3NH3)3Bi2I9 perovskite films. SN Applied Sciences, 2019, 1, 1.	2.9	7
266	Elastic Lubricious Effect of Solidlike Boundary Films in Oil-Starvation Lubrication. Journal of Physical Chemistry C, 2019, 123, 1677-1691.	3.1	7
267	A study of synthesizing stable super-slip carbon nanotubes by grafting octadecylamine. Journal of Colloid and Interface Science, 2019, 540, 126-133.	9.4	7
268	Substrate-free water film for liquid directional transportation. Chemical Engineering Journal, 2021, 411, 128464.	12.7	7
269	Slippery magnetic track inducing droplet and bubble manipulation. Chemical Communications, 2022, 58, 1207-1210.	4.1	7
270	Slippery Surface with Petal-like Structure for Protecting Al Alloy: Anti-corrosion, Anti-fouling and Anti-icing. Journal of Bionic Engineering, 2022, 19, 83-91.	5.0	7

#	Article	IF	CITATIONS
271	A Facile Fabrication for Amphiphobic Aluminum Surface. Chemistry Letters, 2015, 44, 324-326.	1.3	6
272	Optimal design of superhydrophobic surfaces using a semicircular protrusion microtexture. RSC Advances, 2015, 5, 8446-8454.	3.6	6
273	The Tribological Property and Microstructure of Ni-Ti Coating Prepared by Electrodeposition and Heat Treatment. Advances in Materials Science and Engineering, 2016, 2016, 1-6.	1.8	6
274	pH-Responsive Superwetting Fabric for On-demand Oil-Water Separation. Chemistry Letters, 2018, 47, 923-926.	1.3	6
275	A Novel Method to Fabricate Nitrogen and Oxygen Coâ€Doped Flexible Cottonâ€Based Electrode for Wearable Supercapacitors. ChemElectroChem, 2019, 6, 4049-4058.	3.4	6
276	Multifunctional WS ₂ &M-AgNPs superhydrophobic conductive sponges for application in various sensors. New Journal of Chemistry, 2019, 43, 5287-5296.	2.8	6
277	Bionic smart recycled paper endowed with amphiphobic, photochromic, and UV rewritable properties. Nanoscale Advances, 2020, 2, 4813-4821.	4.6	6
278	A robust copper oxide-based superhydrophobic microfiltration membrane for moisture-proof treatment of trace water in transformer oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126843.	4.7	6
279	Simple Method for the Fabrication of Multiple Superwetting Surfaces with Photoresponse. Langmuir, 2021, 37, 11115-11122.	3.5	6
280	Robust superhydrophobic polyurea@cellulose nanocrystal coating. New Journal of Chemistry, 2020, 44, 11739-11745.	2.8	6
281	Selfâ€Organization of Amorphous Carbon Nanocapsules into Diamond Nanocrystals Driven by Selfâ€Nanoscopic Excessive Pressure under Moderate Electron Irradiation without External Heating. Small, 2018, 14, 1702072.	10.0	5
282	Underwater Superoleophobic Crucian Fish Scale: Influence of Ontogeny on Surface Morphologies and Wettability. Journal of Bionic Engineering, 2019, 16, 1061-1067.	5.0	5
283	The fabrication of hierarchically porous carbon-coated nickel oxide nanomaterials with enhanced electrochemical properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 20641-20653.	2.2	5
284	How to Efficiently Prepare Transparent Lubricant-Infused Surfaces: Inspired by Candle Soot. Langmuir, 2021, 37, 4869-4878.	3.5	5
285	Superhydrophobic Carbon Nanotube–Metal Rubber Composites for Emulsion Separation. ACS Applied Nano Materials, 2021, 4, 13643-13654.	5.0	5
286	Theoretical investigation of atomic oxygen erosion mechanisms of 1,3-didecyl cyclopentane, 1,3-dioctyldodecyl cyclopentane and alkylated cyclopentane. RSC Advances, 2014, 4, 50486-50493.	3.6	4
287	Different post-treatment processes and different gas sensing behaviors of hierarchical hollow tungsten trioxide shell. Materials Letters, 2017, 203, 93-96.	2.6	4
288	Polysulfide microspheres with chemical modification for generation of interfaces with macroscopic colour variation and biomimetic superhydrophobicity. Nanoscale Advances, 2019, 1, 281-290.	4.6	4

#	Article	IF	CITATIONS
289	Fine Switching between Underwater Superoleophilicity and Underwater Superoleophobicity while Maintaining Superhydrophobicity. Langmuir, 2020, 36, 3300-3307.	3.5	4
290	A superamphiphobic surface with a hydrogen peroxide-triggered switch to antithetic fluid repellence in a liquid–liquid–air three-phase fluid system. Chemical Communications, 2020, 56, 4312-4315.	4.1	4
291	Simple preparation of a durable and low-cost load-bearing three-dimensional porous material for emulsion separation. New Journal of Chemistry, 2021, 45, 17893-17901.	2.8	4
292	Enhanced Performance and Stability of Carbon Counter Electrode-Based MAPbI ₃ Perovskite Solar Cells with <i>p</i> -Methylphenylamine Iodate Additives. ACS Applied Energy Materials, 2021, 4, 11314-11324.	5.1	4
293	Directional Penetration of Underwater Bubbles on Janus Surfaces. Chemistry Letters, 2019, 48, 1254-1257.	1.3	3
294	Superamphiphobic coatings with antifouling and nonflammable properties using functionalized hydroxyapatite. New Journal of Chemistry, 2021, 45, 6238-6246.	2.8	3
295	One-Step Methods to Fabricate Durable Superhydrophobic Coatings for Flexible Electronic Sensors. Coatings, 2021, 11, 95.	2.6	3
296	Recent advances in biomimetic surfaces inspired by creatures for fog harvesting. New Journal of Chemistry, 2021, 45, 21125-21150.	2.8	3
297	Preparation of an electrically conductive, flame-retardant, and superhydrophobic recycled paper. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128671.	4.7	3
298	Superhydrophobic/Superoleophilic Copper Mesh for Heavy Oil-water Separation. Chemistry Letters, 2022, 51, 796-798.	1.3	3
299	Nanoparticles: Bioinspired Superhydrophobic Fe ₃ O ₄ @Polydopamine@Ag Hybrid Nanoparticles for Liquid Marble and Oil Spill (Adv. Mater. Interfaces 13/2015). Advanced Materials Interfaces, 2015, 2, .	3.7	2
300	Characterizing a lubricant additive for 1,3,4-tri-(2-octyldodecyl) cyclopentane: Computational study and experimental verification. Friction, 2016, 4, 257-265.	6.4	2
301	A different wettable Janus material with universal floatability for anti-turnover and lossless transportation of crude oil. New Journal of Chemistry, 2019, 43, 15213-15221.	2.8	2
302	A Hybrid Stainless-steel Mesh with Nano-array Structure Applied for Efficient Fog Harvesting by Tuning Wetting. Chemistry Letters, 2020, 49, 79-82.	1.3	2
303	Fabrication of switchable surface wettability with UV-triggered on cotton fabric. Materials Letters, 2021, 283, 128767.	2.6	2
304	Anti-greasy and conductive superamphiphobic coating applied to the carbon brushes/conductive rings of hydro-generators. RSC Advances, 2021, 11, 12381-12391.	3.6	2
305	Lubricant self-replenishing slippery surface with prolonged service life for fog harvesting. Friction, 2022, 10, 1676-1692.	6.4	2
306	Stable and biocompatible slippery lubricant-infused anode-oxidated titanium nanotube surfaces <i>>via</i> a grafted polydimethylsiloxane brush. New Journal of Chemistry, 2021, 45, 17493-17502.	2.8	2

#	Article	IF	CITATIONS
307	Integration of bubble phobicity, gas sensing and friction alleviation into a versatile MoS2/SnO2/CNF heterostructure by an impressive, simple and effective method. Nanoscale, 2020, 12, 18629-18639.	5.6	2
308	What are the Progresses and Challenges, from the Electrical Properties of Current-Carrying Friction System to Tribological Performance, for a Stable Current-Carrying Interface?. Journal of Bio- and Tribo-Corrosion, 2022, 8, 1.	2.6	2
309	Functionalized paper with intelligent response to humidity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127844.	4.7	2
310	Tribological performance of ionic liquidâ€lubricated carbon brush/collector ring currentâ€carrying friction system. Biosurface and Biotribology, 2020, 6, 104-113.	1.5	2
311	Mucilage-inspired robust antifouling coatings under liquid mediums. Chemical Engineering Journal, 2022, 446, 136949.	12.7	2
312	Two-step facile fabrication of a superamphiphilic biomimic membrane with a micro–nano structure for oil–water emulsion separation on-demand. New Journal of Chemistry, 2022, 46, 14140-14145.	2.8	2
313	Electron transfer dominated triboelectrification at the hydrophobic/slippery substrate—water interfaces. Friction, 0, , .	6.4	2
314	A Tunable Superwetting Copper Film between Superhydrophobicity and Superhydrophilicity. Chemistry Letters, 2015, 44, 1527-1529.	1.3	1
315	Controlled Growth of Tungsten Oxide Films by Hydrothermal Synthesis for Underwater Superoleophobicity Regulation. Chemistry Letters, 2016, 45, 146-148.	1.3	1
316	Recent Advances in the Fabrication of Superhydrophobic Surfaces. Chemistry Letters, 2017, 46, 152-152.	1.3	1
317	Bioinspired textile with dual-stimuli responsive wettability for body moisture management and signal expression. New Journal of Chemistry, 2021, 45, 12193-12202.	2.8	1
318	Endowment of high buoyancy and antifouling properties upon a simple superamphiphobic cotton fabric. Materials Advances, 2022, 3, 4526-4530.	5.4	1
319	Hydrophobic and tribological behaviors of a poly(<i>p</i> â€phenylene benzobisoxazole) fabric composite reinforced with nanoâ€īiO ₂ . Journal of Applied Polymer Science, 2017, 134, 45077.	2.6	0
320	Miniature Bioreactors: Onâ€Demand Coalescence and Splitting of Liquid Marbles and Their Bioapplications (Adv. Sci. 10/2019). Advanced Science, 2019, 6, 1970061.	11.2	0
321	Site-specific Positioning of MoS ₂ on Fabric Weaves by Post Treatment or <i>In-situ</i> Method for Hydrophobic Stability and Photoluminescence Enhancement. Chemistry Letters, 2020, 49, 1376-1378.	1.3	0
322	Robust moisture-proof coating applied to the protection and storage of bulk metal glass transformer core in mine-environment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 635, 128049.	4.7	0