## Jin-San Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4519810/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Enhanced nuclear localization of YAP1â€2 contributes to EGFâ€induced EMT in NSCLC. Journal of Cellular<br>and Molecular Medicine, 2022, 26, 1013-1023.                                                                                                                   | 3.6 | 4         |
| 2  | Sphingosine 1-phosphate receptor 1 governs endothelial barrier function and angiogenesis by upregulating endoglin signaling. Annals of Translational Medicine, 2022, 10, 136-136.                                                                                        | 1.7 | 7         |
| 3  | P38 initiates degeneration of midbrain GABAergic and glutamatergic neurons in diabetes models.<br>European Journal of Neuroscience, 2022, 56, 3755-3778.                                                                                                                 | 2.6 | 1         |
| 4  | Cell-Surface Programmed Death Ligand-1 Expression Identifies a Sub-Population of Distal Epithelial<br>Cells Enriched in Idiopathic Pulmonary Fibrosis. Cells, 2022, 11, 1593.                                                                                            | 4.1 | 11        |
| 5  | FGF1 alleviates LPS-induced acute lung injury via suppression of inflammation and oxidative stress.<br>Molecular Medicine, 2022, 28, .                                                                                                                                   | 4.4 | 26        |
| 6  | Polygenic Risk Scores have high diagnostic capacity in ankylosing spondylitis. Annals of the Rheumatic<br>Diseases, 2021, 80, 1168-1174.                                                                                                                                 | 0.9 | 49        |
| 7  | Identification of a novel subset of alveolar type 2 cells enriched in PD-L1 and expanded following pneumonectomy. European Respiratory Journal, 2021, 58, 2004168.                                                                                                       | 6.7 | 31        |
| 8  | FGF10 and Lipofibroblasts in Lung Homeostasis and Disease: Insights Gained From the Adipocytes.<br>Frontiers in Cell and Developmental Biology, 2021, 9, 645400.                                                                                                         | 3.7 | 17        |
| 9  | Yap1-2 Isoform Is the Primary Mediator in TGF-β1 Induced EMT in Pancreatic Cancer. Frontiers in<br>Oncology, 2021, 11, 649290.                                                                                                                                           | 2.8 | 7         |
| 10 | Validation of a Novel Fgf10Cre–ERT2 Knock-in Mouse Line Targeting FGF10Pos Cells Postnatally.<br>Frontiers in Cell and Developmental Biology, 2021, 9, 671841.                                                                                                           | 3.7 | 5         |
| 11 | Potential Impact of Diabetes and Obesity on Alveolar Type 2 (AT2)-Lipofibroblast (LIF) Interactions After<br>COVID-19 Infection. Frontiers in Cell and Developmental Biology, 2021, 9, 676150.                                                                           | 3.7 | 9         |
| 12 | Evidence for Multiple Origins of De Novo Formed Vascular Smooth Muscle Cells in Pulmonary<br>Hypertension: Challenging the Dominant Model of Pre-Existing Smooth Muscle Expansion.<br>International Journal of Environmental Research and Public Health, 2021, 18, 8584. | 2.6 | 0         |
| 13 | Evidence for lung repair and regeneration in humans: key stem cells and therapeutic functions of fibroblast growth factors. Frontiers of Medicine, 2020, 14, 262-272.                                                                                                    | 3.4 | 10        |
| 14 | Editorial: The Fibroblast Growth Factor Signaling Pathway in Metabolic Regulation, Development,<br>Disease, and Repair After Injury. Frontiers in Pharmacology, 2020, 11, 586654.                                                                                        | 3.5 | 0         |
| 15 | Predictors of Health-Related Quality of Life and Influencing Factors for COVID-19 Patients, a<br>Follow-Up at One Month. Frontiers in Psychiatry, 2020, 11, 668.                                                                                                         | 2.6 | 124       |
| 16 | EZH2 Regulates Pancreatic Cancer Subtype Identity and Tumor Progression via Transcriptional Repression of <i>GATA6</i> . Cancer Research, 2020, 80, 4620-4632.                                                                                                           | 0.9 | 56        |
| 17 | An FGFR/AKT/SOX2 Signaling Axis Controls Pancreatic Cancer Stemness. Frontiers in Cell and Developmental Biology, 2020, 8, 287.                                                                                                                                          | 3.7 | 32        |
| 18 | Evidence for Overlapping and Distinct Biological Activities and Transcriptional Targets Triggered by<br>Fibroblast Growth Factor Receptor 2b Signaling between Mid- and Early Pseudoglandular Stages of<br>Mouse Lung Development. Cells, 2020, 9, 1274.                 | 4.1 | 19        |

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Temporospatial Expression of Fgfr1 and 2 During Lung Development, Homeostasis, and Regeneration.<br>Frontiers in Pharmacology, 2020, 11, 120.                                                            | 3.5  | 13        |
| 20 | FGF Signaling Pathway: A Key Regulator of Stem Cell Pluripotency. Frontiers in Cell and Developmental<br>Biology, 2020, 8, 79.                                                                           | 3.7  | 160       |
| 21 | Fibroblast Growth Factor 10 Attenuates Renal Damage by Regulating Endoplasmic Reticulum Stress<br>After Ischemia–Reperfusion Injury. Frontiers in Pharmacology, 2020, 11, 39.                            | 3.5  | 18        |
| 22 | Fibroblast Growth Factors in the Management of Acute Kidney Injury Following Ischemia-Reperfusion.<br>Frontiers in Pharmacology, 2020, 11, 426.                                                          | 3.5  | 16        |
| 23 | The WW domains dictate isoform-specific regulation of YAP1 stability and pancreatic cancer cell malignancy. Theranostics, 2020, 10, 4422-4436.                                                           | 10.0 | 11        |
| 24 | Identification of a Repair-Supportive Mesenchymal Cell Population during Airway Epithelial<br>Regeneration. Cell Reports, 2020, 33, 108549.                                                              | 6.4  | 28        |
| 25 | Fibroblast growth factor 10 alleviates particulate matter-induced lung injury by inhibiting the HMGB1-TLR4 pathway. Aging, 2020, 12, 1186-1200.                                                          | 3.1  | 20        |
| 26 | The AMPK–Parkin axis negatively regulates necroptosis and tumorigenesis by inhibiting the necrosome.<br>Nature Cell Biology, 2019, 21, 940-951.                                                          | 10.3 | 102       |
| 27 | A Possible Neurodegeneration Mechanism Triggered by Diabetes. Trends in Endocrinology and Metabolism, 2019, 30, 692-700.                                                                                 | 7.1  | 18        |
| 28 | Metformin induces lipogenic differentiation in myofibroblasts to reverse lung fibrosis. Nature<br>Communications, 2019, 10, 2987.                                                                        | 12.8 | 181       |
| 29 | Blockage of SLC31A1â€dependent copper absorption increases pancreatic cancer cell autophagy to resist cell death. Cell Proliferation, 2019, 52, e12568.                                                  | 5.3  | 90        |
| 30 | FGF10-FGFR2B Signaling Generates Basal Cells and Drives Alveolar Epithelial Regeneration by Bronchial Epithelial Stem Cells after Lung Injury. Stem Cell Reports, 2019, 12, 1041-1055.                   | 4.8  | 94        |
| 31 | A critical role for miR-142 in alveolar epithelial lineage formation in mouse lung development.<br>Cellular and Molecular Life Sciences, 2019, 76, 2817-2832.                                            | 5.4  | 6         |
| 32 | Role of FGF10/FGFR2b Signaling in Mouse Digestive Tract Development, Repair and Regeneration Following Injury. Frontiers in Cell and Developmental Biology, 2019, 7, 326.                                | 3.7  | 13        |
| 33 | Impact of Fgf10 deficiency on pulmonary vasculature formation in a mouse model of bronchopulmonary dysplasia. Human Molecular Genetics, 2019, 28, 1429-1444.                                             | 2.9  | 28        |
| 34 | Hippo signaling promotes lung epithelial lineage commitment by curbing Fgf10 and β-catenin signaling.<br>Development (Cambridge), 2019, 146, .                                                           | 2.5  | 40        |
| 35 | Glycogen Synthase Kinase-3 Inhibition Sensitizes Pancreatic Cancer Cells to Chemotherapy by<br>Abrogating the TopBP1/ATR-Mediated DNA Damage Response. Clinical Cancer Research, 2019, 25,<br>6452-6462. | 7.0  | 43        |
| 36 | FGF10 Protects Against Renal Ischemia/Reperfusion Injury by Regulating Autophagy and Inflammatory Signaling. Frontiers in Genetics, 2018, 9, 556.                                                        | 2.3  | 57        |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Fibroblast Growth Factor 10 in Pancreas Development and Pancreatic Cancer. Frontiers in Genetics, 2018, 9, 482.                                                                                                           | 2.3  | 27        |
| 38 | Fibroblast Growth Factor 10 and Vertebrate Limb Development. Frontiers in Genetics, 2018, 9, 705.                                                                                                                         | 2.3  | 30        |
| 39 | Context-Dependent Epigenetic Regulation of Nuclear Factor of Activated T Cells 1 in Pancreatic<br>Plasticity. Gastroenterology, 2017, 152, 1507-1520.e15.                                                                 | 1.3  | 36        |
| 40 | Fibroblast growth factor 2 protects against renal ischaemia/reperfusion injury by attenuating<br>mitochondrial damage and proinflammatory signalling. Journal of Cellular and Molecular Medicine,<br>2017, 21, 2909-2925. | 3.6  | 39        |
| 41 | Regulation of the Hippo-YAP Pathway by Glucose Sensor O-GlcNAcylation. Molecular Cell, 2017, 68, 591-604.e5.                                                                                                              | 9.7  | 197       |
| 42 | Glycogen synthase kinaseâ€3β ablation limits pancreatitisâ€induced acinarâ€ŧoâ€ductal metaplasia. Journal of<br>Pathology, 2017, 243, 65-77.                                                                              | 4.5  | 29        |
| 43 | <i>Fgf10</i> deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia.<br>Journal of Pathology, 2017, 241, 91-103.                                                                            | 4.5  | 54        |
| 44 | NFATc4 Regulates <i>Sox9</i> Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation.<br>Stem Cells International, 2016, 2016, 1-11.                                                                   | 2.5  | 55        |
| 45 | SIRT1-Activating Compounds (STAC) Negatively Regulate Pancreatic Cancer Cell Growth and Viability<br>Through a SIRT1 Lysosomal-Dependent Pathway. Clinical Cancer Research, 2016, 22, 2496-2507.                          | 7.0  | 32        |
| 46 | GSK-3 inhibition overcomes chemoresistance in human breast cancer. Cancer Letters, 2016, 380, 384-392.                                                                                                                    | 7.2  | 55        |
| 47 | Structural and mechanistic insights into regulation of the retromer coat by TBC1d5. Nature Communications, 2016, 7, 13305.                                                                                                | 12.8 | 88        |
| 48 | GSK-3β Governs Inflammation-Induced NFATc2 Signaling Hubs to Promote Pancreatic Cancer<br>Progression. Molecular Cancer Therapeutics, 2016, 15, 491-502.                                                                  | 4.1  | 44        |
| 49 | Nuclear localized FAM21 participates in NF-κB-dependent gene regulation in pancreatic cancer cells.<br>Journal of Cell Science, 2015, 128, 373-84.                                                                        | 2.0  | 24        |
| 50 | NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar–Ductal<br>Transdifferentiation in the Pancreas. Gastroenterology, 2015, 148, 1024-1034.e9.                                                      | 1.3  | 73        |
| 51 | COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A. Molecular Biology of the Cell, 2015, 26, 91-103.                                                                | 2.1  | 200       |
| 52 | Antithetical <scp>NFAT</scp> c1–Sox2 and p53–miR200 signaling networks govern pancreatic cancer cell plasticity. EMBO Journal, 2015, 34, 517-530.                                                                         | 7.8  | 87        |
| 53 | SNX17 Affects T Cell Activation by Regulating TCR and Integrin Recycling. Journal of Immunology, 2015, 194, 4555-4566.                                                                                                    | 0.8  | 35        |
| 54 | Inflammation-Induced NFATc1–STAT3 Transcription Complex Promotes Pancreatic Cancer Initiation by<br><i>Kras</i> G12D. Cancer Discovery, 2014, 4, 688-701.                                                                 | 9.4  | 108       |

| #  | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Poly(ADP-ribose) Polymerase Inhibitors Sensitize Cancer Cells to Death Receptor-mediated Apoptosis by<br>Enhancing Death Receptor Expression. Journal of Biological Chemistry, 2014, 289, 20543-20558.                                                                            | 3.4 | 47        |
| 56 | Embryonic stem cell factors and pancreatic cancer. World Journal of Gastroenterology, 2014, 20, 2247.                                                                                                                                                                             | 3.3 | 71        |
| 57 | Epigenetic Regulation of Autophagy by the Methyltransferase G9a. Molecular and Cellular Biology, 2013, 33, 3983-3993.                                                                                                                                                             | 2.3 | 177       |
| 58 | Krüppel-like Factor 11 Regulates the Expression of Metabolic Genes via an Evolutionarily Conserved<br>Protein Interaction Domain Functionally Disrupted in Maturity Onset Diabetes of the Young. Journal<br>of Biological Chemistry, 2013, 288, 17745-17758.                      | 3.4 | 31        |
| 59 | High Cell Surface Death Receptor Expression Determines Type I Versus Type II Signaling*. Journal of<br>Biological Chemistry, 2011, 286, 35823-35833.                                                                                                                              | 3.4 | 27        |
| 60 | GRB2 couples RhoU to epidermal growth factor receptor signaling and cell migration. Molecular<br>Biology of the Cell, 2011, 22, 2119-2130.                                                                                                                                        | 2.1 | 30        |
| 61 | Synthesis and Biological Evaluation of Triazol-4-ylphenyl-Bearing Histone Deacetylase Inhibitors as<br>Anticancer Agents. Journal of Medicinal Chemistry, 2010, 53, 1347-1356.                                                                                                    | 6.4 | 66        |
| 62 | Sin3: Master scaffold and transcriptional corepressor. Biochimica Et Biophysica Acta - Gene<br>Regulatory Mechanisms, 2009, 1789, 443-450.                                                                                                                                        | 1.9 | 205       |
| 63 | Molecular cloning and characterization of a novel mouse actin-binding protein Zfp185. Journal of<br>Molecular Histology, 2008, 39, 295-302.                                                                                                                                       | 2.2 | 2         |
| 64 | AGR2, an androgen-inducible secretory protein overexpressed in prostate cancer. Genes Chromosomes and Cancer, 2005, 43, 249-259.                                                                                                                                                  | 2.8 | 129       |
| 65 | Growth inhibitory signalling by TGFβ is blocked in Ras-transformed intestinal epithelial cells at a post-receptor locus. Cellular Signalling, 2003, 15, 699-708.                                                                                                                  | 3.6 | 11        |
| 66 | Differential binding of Sin3 interacting repressor domains to the PAH2 domain of Sin3A. FEBS Letters, 2003, 548, 108-112.                                                                                                                                                         | 2.8 | 19        |
| 67 | Functional analysis of basic transcription element (BTE)-binding protein (BTEB) 3 and BTEB4, a novel<br>Sp1-like protein, reveals a subfamily of transcriptional repressors for the BTE site of the cytochrome<br>P4501A1 gene promoter. Biochemical Journal, 2002, 366, 873-882. | 3.7 | 50        |
| 68 | Signaling disrupts mSin3A binding to the Mad1-like Sin3-interacting domain of TIEG2, an Sp1-like repressor. EMBO Journal, 2002, 21, 2451-2460.                                                                                                                                    | 7.8 | 49        |
| 69 | Keratin 23 (K23), a novel acidic keratin, is highly induced by histone deacetylase inhibitors during<br>differentiation of pancreatic cancer cells. Genes Chromosomes and Cancer, 2001, 30, 123-135.                                                                              | 2.8 | 54        |
| 70 | The Sp1-like Protein BTEB3 Inhibits Transcription via the Basic Transcription Element Box by Interacting with mSin3A and HDAC-1 Co-repressors and Competing with Sp1. Journal of Biological Chemistry, 2001, 276, 36749-36756.                                                    | 3.4 | 74        |
| 71 | Silymarin inhibits function of the androgen receptor by reducing nuclear localization of the receptor in the human prostate cancer cell line LNCaP. Carcinogenesis, 2001, 22, 1399-1403.                                                                                          | 2.8 | 103       |
| 72 | A Conserved α-Helical Motif Mediates the Interaction of Sp1-Like Transcriptional Repressors with the Corepressor mSin3A. Molecular and Cellular Biology, 2001, 21, 5041-5049.                                                                                                     | 2.3 | 173       |

| #  | Article                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Loss of expression of theDRR 1 gene at chromosomal segment 3p21.1 in renal cell carcinoma. , 2000, 27, 1-10.                                 |     | 60        |
| 74 | Allele-specific late replication and fragility of the most active common fragile site, FRA3B. Human<br>Molecular Genetics, 1999, 8, 431-437. | 2.9 | 76        |
| 75 | Frequent homozygous deletions in the FRA3B region in tumor cell lines still leave the FHIT exons intact. Oncogene, 1998, 16, 635-642.        | 5.9 | 28        |
| 76 | Differential loss of heterozygosity at 7q31.2 in follicular and papillary thyroid tumors. Oncogene, 1998, 17, 789-793.                       | 5.9 | 27        |
| 77 | Identification and Chromosomal Localization of CTNNAL1, a Novel Protein Homologous to α-Catenin.<br>Genomics, 1998, 54, 149-154.             | 2.9 | 31        |