Clare V H Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4518559/publications.pdf Version: 2024-02-01

CLADE VH RAKED

#	Article	IF	CITATIONS
1	Insights into olfactory ensheathing cell development from a laserâ€microdissection and transcriptomeâ€profiling approach. Glia, 2020, 68, 2550-2584.	4.9	13
2	The Development and Evolution of Lateral Line Electroreceptors: Insights from Comparative Molecular Approaches. Springer Handbook of Auditory Research, 2019, , 25-62.	0.7	7
3	Olfactory ensheathing cells abutting the embryonic olfactory bulb express <i>Frzb</i> , whose deletion disrupts olfactory axon targeting. Glia, 2018, 66, 2617-2631.	4.9	14
4	Striking parallels between carotid body glomus cell and adrenal chromaffin cell development. Developmental Biology, 2018, 444, S308-S324.	2.0	22
5	Insights into Electroreceptor Development and Evolution from Molecular Comparisons with Hair Cells. Integrative and Comparative Biology, 2018, 58, 329-340.	2.0	21
6	Neural crest Notch/Rbpj signaling regulates olfactory gliogenesis and neuronal migration. Genesis, 2018, 56, e23215.	1.6	7
7	Constitutively active Notch1 converts cranial neural crest-derived frontonasal mesenchyme to perivascular cells <i>in vivo</i> . Biology Open, 2017, 6, 317-325.	1.2	10
8	Notch and Fgf signaling during electrosensory versus mechanosensory lateral line organ development in a non-teleost ray-finned fish. Developmental Biology, 2017, 431, 48-58.	2.0	9
9	Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes. ELife, 2017, 6, .	6.0	54
10	Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome. ELife, 2017, 6, .	6.0	38
11	Evidence for a Notch1â€mediated transition during olfactory ensheathing cell development. Journal of Anatomy, 2016, 229, 369-383.	1.5	9
12	The origin and evolution of cell types. Nature Reviews Genetics, 2016, 17, 744-757.	16.3	572
13	The evolution of the vertebrate cerebellum: absence of a proliferative external granule layer in a nonâ€ŧeleost rayâ€finned fish. Evolution & Development, 2014, 16, 92-100.	2.0	36
14	The development of lateral line placodes: Taking a broader view. Developmental Biology, 2014, 389, 68-81.	2.0	55
15	A fate-map for cranial sensory ganglia in the sea lamprey. Developmental Biology, 2014, 385, 405-416.	2.0	27
16	Evolutionary divergence of trigeminal nerve somatotopy in amniotes. Journal of Comparative Neurology, 2013, 521, 1378-1394.	1.6	9
17	The evolution and development of vertebrate lateral line electroreceptors. Journal of Experimental Biology, 2013, 216, 2515-2522.	1.7	57
18	Olfactory ensheathing glia are required for embryonic olfactory axon targeting and the migration of gonadotropin-releasing hormone neurons. Biology Open, 2013, 2, 750-759.	1.2	66

CLARE V H BAKER

#	Article	IF	CITATIONS
19	The amniote paratympanic organ develops from a previously undiscovered sensory placode. Nature Communications, 2012, 3, 1041.	12.8	52
20	Evolution of electrosensory ampullary organs: conservation of <i>Eya4</i> expression during lateral line development in jawed vertebrates. Evolution & Development, 2012, 14, 277-285.	2.0	17
21	Electrosensory ampullary organs are derived from lateral line placodes in cartilaginous fishes. Development (Cambridge), 2012, 139, 3142-3146.	2.5	63
22	Specification of GnRH-1 neurons by antagonistic FGF and retinoic acid signaling. Developmental Biology, 2012, 362, 254-262.	2.0	56
23	Electrosensory ampullary organs are derived from lateral line placodes in bony fishes. Nature Communications, 2011, 2, 496.	12.8	64
24	Molecular analysis of neurogenic placode development in a basal rayâ€finned fish. Genesis, 2011, 49, 278-294.	1.6	24
25	Holocephalan embryos provide evidence for gill arch appendage reduction and opercular evolution in cartilaginous fishes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1507-1512.	7.1	34
26	Neural crest origin of olfactory ensheathing glia. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21040-21045.	7.1	197
27	Activation of Pax3 target genes is necessary but not sufficient for neurogenesis in the ophthalmic trigeminal placode. Developmental Biology, 2009, 326, 314-326.	2.0	38
28	Lateral line, otic and epibranchial placodes: developmental and evolutionary links?. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2008, 310B, 370-383.	1.3	42
29	Fine-grained fate maps for the ophthalmic and maxillomandibular trigeminal placodes in the chick embryo. Developmental Biology, 2008, 317, 174-186.	2.0	73
30	The evolution and elaboration of vertebrate neural crest cells. Current Opinion in Genetics and Development, 2008, 18, 536-543.	3.3	37
31	Wnt5a Is Required for Cardiac Outflow Tract Septation in Mice. Pediatric Research, 2007, 61, 386-391.	2.3	108
32	A molecular analysis of neurogenic placode and cranial sensory ganglion development in the shark, Scyliorhinus canicula. Developmental Biology, 2007, 304, 156-181.	2.0	101
33	Canonical Wnt signaling is required for ophthalmic trigeminal placode cell fate determination and maintenance. Developmental Biology, 2007, 308, 392-406.	2.0	54
34	Editorial: the evolutionary origin of neural crest and placodes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2005, 304B, 269-273.	1.3	33
35	Restricted response of mesencephalic neural crest to sympathetic differentiation signals in the trunk. Developmental Biology, 2005, 278, 175-192.	2.0	15
36	Cardiac neural crest ablation alters Id2 gene expression in the developing heart. Developmental Biology, 2004, 272, 176-190.	2.0	29

#	Article	IF	CITATIONS
37	Identification and Characterization of a Calcium Channel Î ³ Subunit Expressed in Differentiating Neurons and Myoblasts. Developmental Biology, 2002, 243, 249-259.	2.0	24
38	Pax3-Expressing Trigeminal Placode Cells Can Localize to Trunk Neural Crest Sites but Are Committed to a Cutaneous Sensory Neuron Fate. Developmental Biology, 2002, 249, 219-236.	2.0	44