Hirokazu Tsukaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4516706/publications.pdf

Version: 2024-02-01

239 papers

12,558 citations

25034 57 h-index 30087 103 g-index

249 all docs 249 docs citations

times ranked

249

9335 citing authors

#	Article	IF	CITATIONS
1	Cell Cycling and Cell Enlargement in Developing Leaves of Arabidopsis. Developmental Biology, 1999, 215, 407-419.	2.0	699
2	The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant Journal, 2005, 43, 68-78.	5.7	535
3	The evolution and functional significance of leaf shape in the angiosperms. Functional Plant Biology, 2011, 38, 535.	2.1	421
4	The ASYMMETRIC LEAVES2 Gene of Arabidopsis thaliana, Required for Formation of a Symmetric Flat Leaf Lamina, Encodes a Member of a Novel Family of Proteins Characterized by Cysteine Repeats and a Leucine Zipper. Plant and Cell Physiology, 2002, 43, 467-478.	3.1	356
5	MECHANISM OF LEAF-SHAPE DETERMINATION. Annual Review of Plant Biology, 2006, 57, 477-496.	18.7	329
6	Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant Journal, 1999, 18, 185-193.	5.7	323
7	Sugar-Dependent Expression of the <i>CHS-A</i> Gene for Chalcone Synthase from Petunia in Transgenic <i>Arabidopsis</i> Plant Physiology, 1991, 97, 1414-1421.	4.8	263
8	Leaf shape: genetic controls and environmental factors. International Journal of Developmental Biology, 2005, 49, 547-555.	0.6	235
9	The <i>ROTUNDIFOLIA3</i> gene of <i>Arabidopsis thaliana</i> encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes and Development, 1998, 12, 2381-2391.	5.9	229
10	Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. Journal of Plant Research, 2006, 119, 37-42.	2.4	229
11	The <i>more and smaller cells </i> mutants of <i>Arabidopsis thaliana </i> ii>identify novel roles for <i>SQUAMOSA PROMOTER BINDING PROTEIN-LIKE </i> penes in the control of heteroblasty. Development (Cambridge), 2009, 136, 955-964.	2.5	216
12	TheANGUSTIFOLIAgene ofArabidopsis, a plantCtBPgene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO Journal, 2002, 21, 1267-1279.	7.8	215
13	Analysis of Leaf Development in fugu Mutants of Arabidopsis Reveals Three Compensation Modes That Modulate Cell Expansion in Determinate Organs. Plant Physiology, 2007, 144, 988-999.	4.8	204
14	Organ shape and size: a lesson from studies of leaf morphogenesis. Current Opinion in Plant Biology, 2003, 6, 57-62.	7.1	197
15	The BLADE-ON-PETIOLE 1 gene controls leaf pattern formation through the modulation of meristematic activity in Arabidopsis. Development (Cambridge), 2003, 130, 161-172.	2.5	191
16	Controlling Size in Multicellular Organs: Focus on the Leaf. PLoS Biology, 2008, 6, e174.	5.6	178
17	Keep an Eye on PPi: The Vacuolar-Type H+-Pyrophosphatase Regulates Postgerminative Development in <i>Arabidopsis</i> ÂÂÂ. Plant Cell, 2011, 23, 2895-2908.	6.6	178
18	Involvement of Auxin and Brassinosteroid in the Regulation of Petiole Elongation under the Shade Â. Plant Physiology, 2010, 153, 1608-1618.	4.8	172

#	Article	IF	Citations
19	Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo. Journal of Experimental Botany, 2015, 66, 6093-6107.	4.8	166
20	Coordination of cell proliferation and cell expansion mediated by ribosomeâ€related processes in the leaves of <i>Arabidopsis thaliana</i> . Plant Journal, 2009, 59, 499-508.	5 . 7	162
21	Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape inArabidopsis thaliana. Plant Journal, 2004, 38, 699-713.	5.7	159
22	CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. Plant Journal, 2005, 41, 710-721.	5.7	158
23	Interpretation of mutants in leaf morphology: Genetic evidence for a compensatory system in leaf morphogenesis that provides a new link between cell and organismal theories. International Review of Cytology, 2002, 217, 1-39.	6.2	153
24	The Mechanism of Cell Cycle Arrest Front Progression Explained by a KLUH/CYP78A5-dependent Mobile Growth Factor in Developing Leaves of Arabidopsis thaliana. Plant and Cell Physiology, 2010, 51, 1046-1054.	3.1	148
25	The Different Growth Responses of the Arabidopsis thaliana Leaf Blade and the Petiole during Shade Avoidance are Regulated by Photoreceptors and Sugar. Plant and Cell Physiology, 2005, 46, 213-223.	3.1	147
26	Differential contributions of ribosomal protein genes to <i>Arabidopsis thaliana</i> leaf development. Plant Journal, 2011, 65, 724-736.	5.7	147
27	Brassinosteroids Control the Proliferation of Leaf Cells of Arabidopsis thaliana. Plant and Cell Physiology, 2002, 43, 239-244.	3.1	144
28	Changes in the shapes of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9433-9437.	7.1	132
29	Mechanisms of leaf tooth formation in Arabidopsis. Plant Journal, 2010, 62, 429-441.	5.7	130
30	Large-scale histological analysis of leaf mutants using two simple leaf observation methods: identification of novel genetic pathways governing the size and shape of leaves. Plant Journal, 2006, 48, 638-644.	5 . 7	128
31	Organ Size Regulation in Plants: Insights from Compensation. Frontiers in Plant Science, 2011, 2, 24.	3.6	124
32	Ribosomes and translation in plant developmental control. Plant Science, 2012, 191-192, 24-34.	3.6	118
33	Leaf Development. The Arabidopsis Book, 2013, 11, e0163.	0.5	118
34	Enhanced formation of flowers in salt-stressedArabidopsisafter genetic engineering of the synthesis of glycine betaine. Plant Journal, 2003, 36, 165-176.	5.7	116
35	Plant Elongator regulates auxin-related genes during RNA polymerase II transcription elongation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1678-1683.	7.1	112
36	The bHLH Transcription Factor SPATULA Controls Final Leaf Size in Arabidopsis thaliana. Plant and Cell Physiology, 2010, 51, 252-261.	3.1	111

3

#	Article	IF	CITATIONS
37	Key Proliferative Activity in the Junction between the Leaf Blade and Leaf Petiole of Arabidopsis Â. Plant Physiology, 2011, 157, 1151-1162.	4.8	108
38	Leaf adaxial-abaxial polarity specification and lamina outgrowth: evolution and development. Plant and Cell Physiology, 2012, 53, 1180-1194.	3.1	106
39	The cotyledon: A superior system for studies of leaf development. Planta, 1994, 195, 309.	3.2	104
40	BIN4, a Novel Component of the Plant DNA Topoisomerase VI Complex, Is Required for Endoreduplication in <i>Arabidopsis</i>). Plant Cell, 2007, 19, 3655-3668.	6.6	103
41	Distinct Regulation of Adaxial-Abaxial Polarity in Anther Patterning in Rice Â. Plant Cell, 2010, 22, 1452-1462.	6.6	96
42	Compensation: a key to clarifying the organ-level regulation of lateral organ size in plants. Journal of Experimental Botany, 2015, 66, 1055-1063.	4.8	94
43	ANGUSTIFOLIA3 Signaling Coordinates Proliferation between Clonally Distinct Cells in Leaves. Current Biology, 2013, 23, 788-792.	3.9	93
44	Novel receptor-like kinase ALE2 controls shoot development by specifying epidermis in Arabidopsis. Development (Cambridge), 2007, 134, 1643-1652.	2.5	92
45	The CURLY LEAF gene controls both division and elongation of cells during the expansion of the leaf blade in Arabidopsis thaliana. Planta, 1998, 206, 175-183.	3.2	90
46	Non-cell-autonomously coordinated organ size regulation in leaf development. Development (Cambridge), 2010, 137, 4221-4227.	2.5	89
47	Heteroblasty in Arabidopsis thaliana (L.) Heynh. Planta, 2000, 210, 536-542.	3.2	88
48	Leaf Morphogenesis in Dicotyledons: Current Issues. International Journal of Plant Sciences, 2001, 162, 459-464.	1.3	84
49	Does Ploidy Level Directly Control Cell Size? Counterevidence from Arabidopsis Genetics. PLoS ONE, 2013, 8, e83729.	2.5	84
50	Comparative leaf development in angiosperms. Current Opinion in Plant Biology, 2014, 17, 103-109.	7.1	83
51	Photomorphogenesis of leaves: shade-avoidance and differentiation of sun and shade leaves. Photochemical and Photobiological Sciences, 2005, 4, 770.	2.9	81
52	ANGUSTIFOLIA3 Plays Roles in Adaxial/Abaxial Patterning and Growth in Leaf Morphogenesis. Plant and Cell Physiology, 2011, 52, 112-124.	3.1	79
53	Genetic Control of Petiole Length in Arabidopsis thaliana. Plant and Cell Physiology, 2002, 43, 1221-1228.	3.1	74
54	The Leaf Index: Heteroblasty, Natural Variation, and the Genetic Control of Polar Processes of Leaf Expansion. Plant and Cell Physiology, 2002, 43, 372-378.	3.1	68

#	Article	IF	CITATIONS
55	Behavior of Leaf Meristems and Their Modification. Frontiers in Plant Science, 2015, 6, 1060.	3.6	65
56	The coordination of ploidy and cell size differs between cell layers in leaves. Development (Cambridge), 2016, 143, 1120-5.	2.5	65
57	Developmental genetics of leaf morphogenesis in dicotyledonous plants. Journal of Plant Research, 1995, 108, 407-416.	2.4	64
58	Genetic Framework for Flattened Leaf Blade Formation in Unifacial Leaves of < i > Juncus prismatocarpus < i > \hat{A} \hat{A} . Plant Cell, 2010, 22, 2141-2155.	6.6	60
59	The Naming of Names: Guidelines for Gene Nomenclature in <i>Marchantia</i> . Plant and Cell Physiology, 2016, 57, 257-261.	3.1	60
60	A novel feature of structural variegation in leaves of the tropical plant Schismatoglottis calyptrata. Journal of Plant Research, 2004, 117, 477-480.	2.4	58
61	Taxonomic monograph of <i>Oxygyne</i> (Thismiaceae), rare achlorophyllous mycoheterotrophs with strongly disjunct distribution. Peerl, 2018, 6, e4828.	2.0	56
62	Stable establishment of cotyledon identity during embryogenesis in <i>Arabidopsis</i> by <i>ANGUSTIFOLIA3</i> and <i>HANABA TARANU</i> Development (Cambridge), 2012, 139, 2436-2446.	2.5	52
63	ROTUNDIFOLIA4 Regulates Cell Proliferation Along the Body Axis in Arabidopsis Shoot. Plant and Cell Physiology, 2011, 52, 59-69.	3.1	51
64	Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea. Nature Communications, 2015, 6, 6450.	12.8	50
65	Leaf shape diversity with an emphasis on leaf contour variation, developmental background, and adaptation. Seminars in Cell and Developmental Biology, 2018, 79, 48-57.	5.0	50
66	Evidence for a Role of ANACO82 as a Ribosomal Stress Response Mediator Leading to Growth Defects and Developmental Alterations in Arabidopsis. Plant Cell, 2017, 29, 2644-2660.	6.6	49
67	Dissection of Enhanced Cell Expansion Processes in Leaves Triggered by a Defect in Cell Proliferation, with Reference to Roles of Endoreduplication. Plant and Cell Physiology, 2006, 48, 278-286.	3.1	48
68	Characterization and subcellular localization of a small GTP-binding protein (Ara-4) fromArabidopsis: conditional expression under control of the promoter of the gene for heat-shock protein HSP81-1. Molecular Genetics and Genomics, 1996, 250, 533-539.	2.4	47
69	Leaf Development. The Arabidopsis Book, 2002, 1, e0072.	0.5	46
70	Impact of segmental chromosomal duplications on leaf size in the ⟨i⟩grandifoliaâ€Đ⟨/i⟩ mutants of ⟨i>Arabidopsis thaliana⟨/i>. Plant Journal, 2009, 60, 122-133.	5.7	46
71	Characterization of <i>EMU</i> , the <i>Arabidopsis</i> homolog of the yeast THO complex member <i>HPR1</i> . Rna, 2010, 16, 1809-1817.	3.5	46
72	Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis. Scientific Reports, 2018, 8, 1472.	3.3	46

#	Article	IF	Citations
73	Pyrophosphate inhibits gluconeogenesis by restricting UDP-glucose formation in vivo. Scientific Reports, 2018, 8, 14696.	3.3	46
74	Nitrogen dioxide regulates organ growth by controlling cell proliferation and enlargement in <scp>A</scp> rabidopsis. New Phytologist, 2014, 201, 1304-1315.	7.3	44
75	Suppressor Screen and Phenotype Analyses Revealed an Emerging Role of the Monofunctional Peroxisomal Enoyl-CoA Hydratase 2 in Compensated Cell Enlargement. Frontiers in Plant Science, 2016, 7, 132.	3.6	41
76	Compensated Cell Enlargement in fugu5 is Specifically Triggered by Lowered Sucrose Production from Seed Storage Lipids. Plant and Cell Physiology, 2017, 58, 668-678.	3.1	39
77	Chemical Identity of a Rotting Animal-Like Odor Emitted from the Inflorescence of the Titan Arum (<i>Amorphophallus titanum</i>). Bioscience, Biotechnology and Biochemistry, 2010, 74, 2550-2554.	1.3	38
78	Acquisition and Diversification of Cladodes: Leaf-Like Organs in the Genus <i>Asparagus</i> Plant Cell, 2012, 24, 929-940.	6.6	38
79	The ATM <i>-</i> Dependent DNA Damage Response Acts as an Upstream Trigger for Compensation in the <i>fas1</i> Mutation during Arabidopsis Leaf Development Â. Plant Physiology, 2013, 162, 831-841.	4.8	38
80	Molecular evidence of reticulate evolution in the subgenus <i>Plantago</i> (Plantaginaceae). American Journal of Botany, 2009, 96, 1627-1635.	1.7	37
81	Morphological Adaptation of Inflorescences in Plants that Develop at Low Temperatures in Early Spring: The Convergent Evolution of "Downy Plants". Plant Biology, 2001, 3, 536-543.	3 . 8	36
82	Expression patterns of <i>AaDL</i> , a <i>CRABS CLAW</i> ortholog in <i>Asparagus asparagoides</i> (Asparagaceae), demonstrate a stepwise evolution of <i>CRC</i> / <i>DL</i> subfamily of <i>YABBY</i> genes. American Journal of Botany, 2010, 97, 591-600.	1.7	36
83	Two Nucleolar Proteins, GDP1 and OLI2, Function As Ribosome Biogenesis Factors and Are Preferentially Involved in Promotion of Leaf Cell Proliferation without Strongly Affecting Leaf Adaxial–Abaxial Patterning in Arabidopsis thaliana. Frontiers in Plant Science, 2017, 8, 2240.	3.6	35
84	ANGUSTIFOLIA, a plant homolog of CtBP/BARS, functions outside the nucleus. Plant Journal, 2011, 68, 788-799.	5.7	34
85	Identification of Factors that Cause Heterophylly in Ludwigia arcuata Walt. (Onagraceae). Plant Biology, 2001, 3, 98-105.	3.8	33
86	Thermal insulation and accumulation of heat in the downy inflorescences of Saussurea medusa (Asteraceae) at high elevation in Yunnan, China. Journal of Plant Research, 2002, 115, 263-268.	2.4	33
87	The Arabidopsis <i>phyB-9</i> Mutant Has a Second-Site Mutation in the <i>VENOSA4</i> Gene That Alters Chloroplast Size, Photosynthetic Traits, and Leaf Growth. Plant Physiology, 2018, 178, 3-6.	4.8	32
88	Gravitropism in Leaves of Arabidopsis thaliana (L.) Heynh Plant and Cell Physiology, 2006, 47, 217-223.	3.1	31
89	How do †housekeeping†mgenes control organogenesis?†unexpected new findings on the role of housekeeping genes in cell and organ differentiation. Journal of Plant Research, 2013, 126, 3-15.	2.4	31
90	The Conflict Between Cell Proliferation and Expansion Primarily Affects Stem Organogenesis in Arabidopsis. Plant and Cell Physiology, 2014, 55, 1994-2007.	3.1	31

#	Article	IF	CITATIONS
91	Enhanced Cell Expansion in a KRP2 Overexpressor is Mediated by Increased V-ATPase Activity. Plant and Cell Physiology, 2013, 54, 1989-1998.	3.1	30
92	Conserved functional control, but distinct regulation of cell proliferation in rice and Arabidopsis leaves revealed by comparative analysis of $\langle i \rangle$ GRF-INTERACTING FACTOR $1 \langle i \rangle$ orthologs. Development (Cambridge), 2018, 145, .	2.5	30
93	OLIGOCELLULA1/HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 Promotes Cell Proliferation With HISTONE DEACETYLASE9 and POWERDRESS During Leaf Development in Arabidopsis thaliana. Frontiers in Plant Science, 2018, 9, 580.	3.6	30
94	Phenotypic Characterization and Molecular Mapping of an acaulis2 Mutant of Arabidopsis thaliana with Flower Stalks of Much Reduced Length. Plant and Cell Physiology, 1995, 36, 239-246.	3.1	29
95	Spatially Different Tissue-Scale Diffusivity Shapes ANGUSTIFOLIA3 Gradient in Growing Leaves. Biophysical Journal, 2017, 113, 1109-1120.	0.5	29
96	Multiple steps of leaf thickening during sunâ€leaf formation in Arabidopsis. Plant Journal, 2019, 100, 738-753.	5.7	29
97	An auxin signaling network translates low-sugar-state input into compensated cell enlargement in the fugu5 cotyledon. PLoS Genetics, 2021, 17, e1009674.	3.5	29
98	Leaf anatomy of a rheophyte, Dendranthema yoshinaganthum (Asteraceae), and of hybrids between D. yoshinaganthum and a closely related non-rheophyte, D. indicum. Journal of Plant Research, 2002, 115, 329-333.	2.4	28
99	Evolutionary and developmental studies of unifacial leaves in monocots: Juncus as a model system. Journal of Plant Research, 2010, 123, 35-41.	2.4	28
100	Metabolic Control of Gametophore Shoot Formation through Arginine in the Moss Physcomitrium patens. Cell Reports, 2020, 32, 108127.	6.4	28
101	Hybridization and introgression between Callicarpa japonica and C. mollis (Verbenaceae) in central Japan, as inferred from nuclear and chloroplast DNA sequences. Molecular Ecology, 2003, 12, 3003-3011.	3.9	27
102	Promotion of chloroplast proliferation upon enhanced post-mitotic cell expansion in leaves. BMC Plant Biology, 2013, 13, 143.	3.6	27
103	Regulation of pyrophosphate levels by H ⁺ -PPase is central for proper resumption of early plant development. Plant Signaling and Behavior, 2012, 7, 38-42.	2.4	26
104	The leaf meristem enigma: The relationship between the plate meristem and the marginal meristem. Plant Cell, 2021, 33, 3194-3206.	6.6	26
105	Genetic evidence for polarities that regulate leaf morphogenesis. Journal of Plant Research, 1998, 111, 113-119.	2.4	25
106	Regulation of the biosynthesis of plant hormones by cytochrome P450s. Journal of Plant Research, 2002, 115, 169-177.	2.4	24
107	Phylogenetics of the mycoheterotrophic genus <i>Thismia</i> (Thismiaceae: Dioscoreales) with a focus on the Old World taxa: delineation of novel natural groups and insights into the evolution of morphological traits. Botanical Journal of the Linnean Society, 2020, 193, 287-315.	1.6	24
108	Structurally related Arabidopsis ANGUSTIFOLIA is functionally distinct from the transcriptional corepressor CtBP. Development Genes and Evolution, 2007, 217, 759-769.	0.9	23

#	Article	IF	Citations
109	ANGUSTIFOLIA contributes to the regulation of three-dimensional morphogenesis in the liverwort Marchantia polymorpha. Development (Cambridge), $2018,145,.$	2.5	23
110	Control of Leaf Morphogenesis by Long- and Short-Distance Signaling: Differentiation of Leaves Into Sun or Shade Types and Compensated Cell Enlargement. , 2008, , 47-62.		22
111	Plastid translation is essential for lateral root stem-cell patterning in <i>Arabidopsis thaliana</i> Biology Open, 2018, 7, .	1.2	22
112	Identification of the unique molecular framework of heterophylly in the amphibious plant <i>Callitriche palustris</i> L. Plant Cell, 2021, 33, 3272-3292.	6.6	22
113	Probing the stochastic property of endoreduplication in cell size determination of Arabidopsis thaliana leaf epidermal tissue. PLoS ONE, 2017, 12, e0185050.	2.5	22
114	Optical and anatomical characteristics of bracts from the Chinese "glasshouse" plant, Rheum alexandrae Batalin (Polygonaceae), in Yunnan, China. Journal of Plant Research, 2002, 115, 59-63.	2.4	21
115	A New Species of <i>Thismia</i> (Thismiaceae) from West Kalimantan, Borneo. Systematic Botany, 2012, 37, 53-57.	0.5	21
116	Gene flow between <i>Impatiens radicans</i> and <i>I. javensis</i> (Balsaminaceae) in Gunung Pangrango, central Java, Indonesia. American Journal of Botany, 2004, 91, 2119-2123.	1.7	19
117	Characterization of a member of the AN subfamily, IAN, from Ipomoea nil. Plant and Cell Physiology, 2005, 46, 250-255.	3.1	19
118	Evaluation of morphological and molecular variation in Plantago asiatica var. densiuscula, with special reference to the systematic treatment of Plantago asiatica var. yakusimensis. Journal of Plant Research, 2006, 119, 385-395.	2.4	19
119	Marchantia polymorpha, a New Model Plant for Autophagy Studies. Frontiers in Plant Science, 2019, 10, 935.	3.6	19
120	Dimorphic Leaf Development of the Aquatic Plant Callitriche palustris L. Through Differential Cell Division and Expansion. Frontiers in Plant Science, 2020, 11, 269.	3.6	19
121	Floral organ-specific and constitutive expression of an Arabidopsis thaliana heat-shock HSP18.2:: GUS fusion gene is retained even after homeotic conversion of flowers by mutation. Molecular Genetics and Genomics, 1993, 237-237, 26-32.	2.4	18
122	Phylogenetic Relationships among Species in the GeneraChisochetonandGuareaThat Have Unique Indeterminate Leaves as Inferred from Sequences of Chloroplast DNA. International Journal of Plant Sciences, 2003, 164, 13-24.	1.3	18
123	Phylogenetic position of Oxygyne shinzatoi (Burmanniaceae) inferred from 18S rDNA sequences. Journal of Plant Research, 2008, 121, 27-32.	2.4	18
124	The unique function of the <i> Arabidopsis </i> circadian clock gene <i> PRR5 </i> in the regulation of shade avoidance response. Plant Signaling and Behavior, 2013, 8, e23534.	2.4	18
125	ANGUSTIFOLIA Regulates Actin Filament Alignment for Nuclear Positioning in Leaves. Plant Physiology, 2019, 179, 233-247.	4.8	18
126	An <i>Agrobacterium</i> â€mediated stable transformation technique for the hornwort model <i>Anthoceros agrestis</i> . New Phytologist, 2021, 232, 1488-1505.	7.3	18

#	Article	lF	CITATIONS
127	Comparative analysis of the RTFL peptide family on the control of plant organogenesis. Journal of Plant Research, 2015, 128, 497-510.	2.4	17
128	Has the impact of endoreduplication on cell size been overestimated? New Phytologist, 2019, 223, 11-15.	7.3	17
129	Molecular variation of Spiranthes sinensis (Orchidaceae) in Japan, with special reference to systematic treatment of seasonally differentiated groups and a dwarf form, f. gracilis, from Yakushima Island. Journal of Plant Research, 2005, 118, 13-18.	2.4	16
130	Berberine enhances defects in the establishment of leaf polarity in asymmetric leaves1 and asymmetric leaves2 of Arabidopsis thaliana. Plant Molecular Biology, 2012, 79, 569-581.	3.9	16
131	A pulseâ€chase strategy for EdU labelling assay is able to rapidly quantify cell division orientation. New Phytologist, 2016, 211, 1462-1469.	7.3	16
132	Re-examination of the role of endoreduplication on cell-size control in leaves. Journal of Plant Research, 2019, 132, 571-580.	2.4	16
133	The Role of Meristematic Activities in the Formation of Leaf Blades. Journal of Plant Research, 2000, 113, 119-126.	2.4	15
134	Large-scale general collection of wild-plant DNA in Mustang, Nepal. Journal of Plant Research, 2005, 118, 57-60.	2.4	15
135	Arabidopsis Mutants by Activation Tagging in which Photosynthesis Genes are Expressed in Dedifferentiated Calli. Plant and Cell Physiology, 2006, 47, 319-331.	3.1	15
136	A Consideration of Leaf Shape Evolution in the Context of the Primary Function of the Leaf as a Photosynthetic Organ. Advances in Photosynthesis and Respiration, 2018, , 1-26.	1.0	15
137	Isolation and characterization of the Larix gmelinii ANGUSTIFOLIA (LgAN) gene. Planta, 2008, 228, 601-608.	3.2	14
138	Leaf development and evolution. Journal of Plant Research, 2010, 123, 3-6.	2.4	14
139	Class III compensation, represented by KRP2 over expression, depends on V-ATP as activity in proliferative cells. Plant Signaling and Behavior, 2013, 8, e27204.	2.4	14
140	A novel method for single-grain-based metabolic profiling of Arabidopsis seed. Metabolomics, 2017, 13, 1.	3.0	14
141	Excess Pyrophosphate within Guard Cells Delays Stomatal Closure. Plant and Cell Physiology, 2019, 60, 875-887.	3.1	14
142	The diversity of stomatal development regulation in $\langle i \rangle$ Callitriche $\langle i \rangle$ is related to the intrageneric diversity in lifestyles. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
143	Organ size control in Arabidopsis: Insights from compensation studies. Plant Morphology, 2010, 22, 65-71.	0.1	14
144	Molecular identification of the mycorrhizal fungi of the epiparasitic plant Monotropastrum humile var. glaberrimum (Ericaceae). Journal of Plant Research, 2005, 118, 53-56.	2.4	13

#	Article	IF	CITATIONS
145	A Comparative Study on the Anatomy and Development of Different Shapes of Domatia in Cinnamomum camphora (Lauraceae). Annals of Botany, 2006, 97, 601-610.	2.9	13
146	Taxonomic status of MonotropastrumÂhumile, with special reference to M.Âhumile var. glaberrimum (Ericaceae, Monotropoideae). Journal of Plant Research, 2008, 121, 271-278.	2.4	13
147	<i>Kalimantanorchis</i> : a New Genus of Mycotrophic Orchid from West Kalimantan, Borneo. Systematic Botany, 2011, 36, 49-52.	0.5	13
148	A New Species of <l>Lecanorchis</l> Blume (Orchidaceae, Vanilloideae) from Kalimantan, Borneo. Systematic Botany, 2013, 38, 69-74.	0.5	13
149	Two ANGUSTIFOLIA genes regulate gametophore and sporophyte development in Physcomitrella patens. Plant Journal, 2020, 101, 1318-1330.	5.7	13
150	Detection of the Cell Proliferation Zone in Leaves by Using EdU. Bio-protocol, 2015, 5, .	0.4	13
151	Brefeldin A induces the accumulation of unusual membrane structures in elongating pollen tubes of Nicotiana tabacum L Journal of Plant Physiology, 1996, 149, 683-689.	3.5	12
152	Morphological and molecular variation in Mitchella undulata, with special reference to the systematic treatment of the dwarf form from Yakushima. Journal of Plant Research, 2003, 116, 309-315.	2.4	12
153	Morphological, physiological and molecular genetic characterization of Arabidopsis himalaica, with reference to A. thaliana. Journal of Plant Research, 1997, 110, 15-23.	2.4	11
154	Precocious progression of tissue maturation instructs basipetal initiation of leaflets in <i>Chelidonium majus</i> subsp. <i>asiaticum</i> (Papaveraceae). American Journal of Botany, 2013, 100, 1116-1126.	1.7	11
155	A new species of Gastrodia (Orchidaceae: Gastrodieae, Epidendroideae) from Java. Phytotaxa, 2016, 273, 77.	0.3	11
156	Thismia brunneomitroides (Thismiaceae), a new mycoheterotrophic species from southern Thailand. Phytotaxa, 2017, 314, 103.	0.3	11
157	AtMap1: a DNA microarray for genomic deletion mapping in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 56, 1058-1065.	5 . 7	10
158	Infrared thermography and odour composition of the <i>Amorphophallus gigas</i> (Araceae) inflorescence: the cooling effect of the odorous liquid. Plant Biology, 2011, 13, 502-507.	3.8	10
159	Yield increase: GRFs provide the key. Nature Plants, 2016, 2, 15210.	9.3	10
160	A Method for Evaluating Three-Dimensional Morphological Features: A Case Study Using Marchantia polymorpha. Frontiers in Plant Science, 2019, 10, 1214.	3.6	10
161	Excess Pyrophosphate Restrains Pavement Cell Morphogenesis and Alters Organ Flatness in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 31.	3.6	10
162	Suppression of class I compensated cell enlargement by xs2Âmutation is mediated by salicylic acid signaling. PLoS Genetics, 2020, 16, e1008873.	3.5	10

#	Article	IF	CITATIONS
163	Quantitative Imaging Reveals Distinct Contributions of SnRK2 and ABI3 in Plasmodesmatal Permeability in Physcomitrella patens. Plant and Cell Physiology, 2020, 61, 942-956.	3.1	10
164	Cell division and cell enlargement in isolated Cucurbita cotyledons grown in darkness and in light. Journal of Plant Research, 2002, 115, 375-380.	2.4	9
165	Two New Species of <i>Sciaphila</i> Blume (Triuridaceae) from Kalimantan, Borneo, with a New Record of <i>S. thaidanica</i> from Borneo. Systematic Botany, 2013, 38, 600-605.	0.5	9
166	Intraspecific comparative analyses of metabolites between diploid and tetraploid Arabidopsis thaliana and Pyrus communis. New Negatives in Plant Science, 2015, 1-2, 53-61.	0.9	9
167	Flora of Bokor National Park VII: Thismia bokorensis (Burmanniaceae), a new species representing a new generic record. Phytotaxa, 2018, 334, 65.	0.3	9
168	Expression Profiles of ANGUSTIFOLIA3 and SHOOT MERISTEMLESS, Key Genes for Meristematic Activity in a One-Leaf Plant Monophyllaea glabra, Revealed by Whole-Mount In Situ Hybridization. Frontiers in Plant Science, 2020, 11, 1160.	3.6	9
169	Stem integrity in <i>Arabidopsis thaliana</i> requires a load-bearing epidermis. Development (Cambridge), 2021, 148, .	2.5	9
170	Analysis of intergenic spacer regions in the nuclear rDNA of <i>Pharbitis nil</i> . Genome, 1992, 35, 92-97.	2.0	8
171	Genetic Relationship Between <i>Angustifolia3</i> and <i>Extra-Small Sisters</i> Highlights Novel Mechanisms Controlling Leaf Size. Plant Signaling and Behavior, 2007, 2, 378-380.	2.4	8
172	Cladodes, leaf-like organs in Asparagus, show the significance of co-option of pre-existing genetic regulatory circuit for morphological diversity of plants. Plant Signaling and Behavior, 2012, 7, 961-964.	2.4	8
173	A new species of Epirixanthes (Polygalaceaea) from Imbak Canyon, Sabah, Borneo. Phytotaxa, 2016, 266, 146.	0.3	8
174	The cytochrome P450 CYP77A4 is involved in auxin-mediated patterning of the <i>Arabidopsis thaliana </i>	2.5	8
175	Spiranthes sinensis var.amoena in Japan contains two seasonally differentiated groups. Journal of Plant Research, 1994, 107, 187-190.	2.4	7
176	An Arabidopsis Gene Isolated by a Novel Method for Detecting Genetic Interaction in Yeast Encodes the GDP Dissociation Inhibitor of Ara4 GTPase. Plant Cell, 1996, 8, 2079.	6.6	7
177	An assumed rheophytic orchid: Bulbophyllum rheophyton n.sp., from Borneo. Plant Systematics and Evolution, 2011, 293, 71-73.	0.9	7
178	Modification and co-option of leaf developmental programs for the acquisition of flat structures in monocots: unifacial leaves in Juncus and cladodes in Asparagus. Frontiers in Plant Science, 2013, 4, 248.	3.6	7
179	Acropetal leaflet initiation of Eschscholzia californica is achieved by constant spacing of leaflets and differential growth of leaf. Planta, 2014, 240, 125-135.	3.2	7
180	How leaves of mycoheterotrophic plants evolved – from the view point of a developmental biologist. New Phytologist, 2018, 217, 1401-1406.	7.3	7

#	Article	IF	Citations
181	an3-Mediated Compensation Is Dependent on a Cell-Autonomous Mechanism in Leaf Epidermal Tissue. Plant and Cell Physiology, 2020, 61, 1181-1190.	3.1	7
182	Dynamic rearrangement and autophagic degradation of mitochondria during spermiogenesis in the liverwort Marchantia polymorpha. Cell Reports, 2022, 39, 110975.	6.4	7
183	The Asymmetric Leaves2 (AS2) Gene of Arabidopsis Thaliana Regulates Lamina Formation and is Required for Patterning of Leaf Venation. Progress in Biotechnology, 2001, 18, 63-68.	0.2	6
184	Leaf-shape variation of Paederia foetida in Japan: reexamination of the small, narrow leaf form from Miyajima Island. Journal of Plant Research, 2006, 119, 303-308.	2.4	6
185	Morphological variation in leaf shape in Ainsliaea apiculata with special reference to the endemic characters of populations on Yakushima Island, Japan. Journal of Plant Research, 2007, 120, 351-358.	2.4	6
186	Two New Species of Sciaphila (Triuridaceae) from Sarawak (Borneo, Malaysia). Phytotaxa, 2014, 170, 283.	0.3	6
187	A new species of Gastrodia (Gastrodieae, Epidendroideae, Orchidaceae) from the Maliau Basin Conservation Area, Sabah, Borneo. Phytotaxa, 2018, 367, 78.	0.3	6
188	Oneâ€leaf plants in the Gesneriaceae: Natural mutants of the typical shoot system. Development Growth and Differentiation, 2019, 61, 25-33.	1.5	6
189	<i>Callitriche</i> as a potential model system for evolutionary studies on the dorsiventral distribution of stomata. Plant Signaling and Behavior, 2021, 16, 1978201.	2.4	6
190	Thismia sumatrana (Thismiaceae), a new species from West Sumatra, Indonesia, with discussions on the taxonomic identity of Thismia clavigera. PhytoKeys, 2018, 113, 59-67.	1.0	6
191	Roles of the vacuolar H ⁺ -PPase in seed storage oil mobilization and plant development. Plant Morphology, 2014, 26, 45-51.	0.1	6
192	Flowering time of two saprophytic plants, Monotropa uniflora L. and Monotropastrum humile (D.) Tj ETQq0 0 0 rg	gBT_/Qverl	ock 10 Tf 50 3
193	Design for controllability. EMBO Reports, 2013, 14, 3-3.	4.5	5
194	Molecular bases for phyllomorph development in a one-leaf plant, Monophyllaea glabra. American Journal of Botany, 2017, 104, 233-240.	1.7	5
195	Thismia bryndonii (Thismiaceae), a new species from Maliau Basin, Sabah, Borneo. Phytotaxa, 2017, 312, 135.	0.3	5
196	Morphogenesis of flattened unifacial leaves in Juncus prismatocarpus (Juncaceae). New Phytologist, 2019, 222, 1101-1111.	7.3	5
197	Two atypical ANGUSTIFOLIA without a plantâ€specific Câ€terminus regulate gametophore and sporophyte shapes in the moss Physcomitrium (Physcomitrella) patens. Plant Journal, 2021, 105, 1390-1399.	5.7	5
198	Three-dimensional quantification of twisting in the Arabidopsis petiole. Journal of Plant Research, 2021, 134, 811-819.	2.4	5

#	Article	IF	CITATIONS
199	A plant-specific DYRK kinase DYRKP coordinates cell morphology in Marchantia polymorpha. Journal of Plant Research, 2021, 134, 1265-1277.	2.4	5
200	ROTUNDIFOLIA4., 2013, , 53-57.		4
201	Lineage diversification and hybridization in the Cayratia japonica–Cayratia tenuifolia species complex. Molecular Phylogenetics and Evolution, 2014, 75, 227-238.	2.7	4
202	Balanced cell proliferation and expansion is essential for flowering stem growth control. Plant Signaling and Behavior, 2015, 10, e992755.	2.4	4
203	A New Species of Schismatoglottis (Schismatoglottidinae, Araceae) from West Kalimantan and Observations of Its Peculiar Bulbil Development. Systematic Botany, 1999, 24, 62.	0.5	3
204	DRL1 regulates adaxial leaf patterning and shoot apical meristem activity inArabidopsis. Journal of Plant Biology, 2007, 50, 467-474.	2.1	3
205	Journal of Plant Research chosen as one of the top 100 journals in biology and medicine over the last 100Âyears. Journal of Plant Research, 2009, 122, 353-354.	2.4	3
206	Flowering phenology of the nine-year plant, Strobilanthes cernua (Acanthaceae). Tropics, 2011, 20, 79-85.	0.8	3
207	Arundina graminifolia var. revoluta (Arethuseae, Orchidaceae) has fern-type rheophyte characteristics in the leaves. Journal of Plant Research, 2015, 128, 239-247.	2.4	3
208	A loss-of-function mutation in the <i>DWARF4</i> / <i>PETANKO5</i> gene enhances the late-flowering and semi-dwarf phenotypes of the <i>Arabidopsis</i> clock mutant <i>lhy-12;cca1-101</i> under continuous light without affecting <i>FLC</i> expression. Plant Biotechnology, 2016, 33, 315-321.	1.0	3
209	Morphological and phylogenetic investigations for several cryptic ant-plants found in Callicarpa (Lamiaceae) from Borneo. Journal of Plant Research, 2016, 129, 591-601.	2.4	3
210	A Role for Auxin in Triggering Lamina Outgrowth of Unifacial Leaves. Plant Physiology, 2021, 186, 1013-1024.	4.8	3
211	Characterization of a dehydrogenase motif and an uORF in Arabidopsis ANGUSTIFOLIA gene. Plant Biotechnology, 2008, 25, 365-368.	1.0	3
212	A hypothesis on the origin of genetic heterozygosity in diploids and triploids in Japanese Cayratia japonica species complex (Vitaceae). Journal of Plant Research, 2012, 125, 475-481.	2.4	2
213	Aphyllorchis maliauensis (Orchidaceae), a new species from the Maliau Basin, Sabah, Borneo. Phytotaxa, 2018, 367, 85.	0.3	2
214	<p>Emended description and new localities of Oxygyne shinzatoi (Burmanniaceae/Thismiaceae), with discussion of phylogenetic relationships of Oxygyne from Japan and Africa</p> . Phytotaxa, 2019, 423, 238-246.	0.3	2
215	Morphological characterization of domatium development in Callicarpa saccata. Annals of Botany, 2020, 125, 521-532.	2.9	2
216	ROTUNDIFOLIA4: A Plant-Specific Small Peptide. , 2006, , 37-40.		2

#	Article	IF	CITATIONS
217	Epitypification with an emended description of Tropidia connata (Orchidaceae, Epidendroideae,) Tj ETQq1	1 0.784314 rgBT 1.0	/Qverlock 1
218	Molecular phylogenetic study of the tribe Tropidieae (Orchidaceae, Epidendroideae) with taxonomic and evolutionary implications. PhytoKeys, 2020, 140, 11-22.	1.0	2
219	Transformation of Protoplasmic Droplets of Chara by Ion Injection. Journal of Plant Physiology, 1991, 138, 317-321.	3.5	1
220	Greetings from the new editor-in-chief. Journal of Plant Research, 2009, 122, 1-2.	2.4	1
221	A series of JPR Symposia in Volume 123. Journal of Plant Research, 2010, 123, 1-2.	2.4	1
222	Announcement of awards by the Journal of Plant Research. Journal of Plant Research, 2011, 124, 559-560.	2.4	1
223	<i>Burmannia bengkuluensis</i> sp. nov. (Burmanniaceae) from Sumatra. Nordic Journal of Botany, 2012, 30, 159-162.	0.5	1
224	On the Journal of Plant Research in the Year 2012. Journal of Plant Research, 2013, 126, 1-2.	2.4	1
225	Tissue-dependency of the impact of endoreduplication on cell size. Plant Morphology, 2017, 29, 87-90.	0.1	1
226	A New Member of the CtBP/BARS. , 2007, , 112-118.		1
227	Fibonacci spirals may not need the Golden Angle. Quantitative Plant Biology, 2022, 3, .	2.0	1
228	Protein Kinase MpYAK1 Is Involved in Meristematic Cell Proliferation, Reproductive Phase Change and Nutrient Signaling in the Liverwort <i>Marchantia polymorpha</i>). Plant and Cell Physiology, 2022, 63, 1063-1077.	3.1	1
229	Title is missing!. Kagaku To Seibutsu, 2010, 48, 591-593.	0.0	O
230	692. PHAIUS HEKOUENSIS. Curtis's Botanical Magazine, 2010, 27, 339-347.	0.3	0
231	Sweat Feeding Behavior by the Moth Arthroschista hilaralis (Crambidae) in the Maliau Basin Conservation Area (Sabah, Borneo). Entomological News, 2018, 127, 386-389.	0.2	0
232	Nephelaphyllum maliauensis (Orchidaceae; Collabiinae), a new species from the Maliau Basin, Sabah, Borneo, with a discussion of the taxonomic identities of N. pulchrum, N. latilabre and N. flabellatum. Phytotaxa, 2018, 336, 89.	0.3	0
233	A new variety of fern from Borneo, Sphaerostephanos unitus var. dimorphophylla (Thelypteridaceae). Phytotaxa, 2018, 346, 287.	0.3	О
234	A Pulse–chase EdU Method for Detection of Cell Division Orientation in Arabidopsis and Juncus prismatocarpus Leaf Primordia. Bio-protocol, 2021, 11, e3882.	0.4	0

#	Article	IF	CITATIONS
235	Formation of a Symmetric Flat Leaf Lamina in Arabidopsis. , 2003, , 177-187.		O
236	Intraspecific variation and molecular polymorphisms in Japanese Spiranthes sinensis var. australis Plant Morphology, 2005, 17, 31-34.	0.1	0
237	Acquisition and morphological diversification of leaf-like organ in the genus Asparagus. Plant Morphology, 2013, 25, 89-94.	0.1	O
238	Hirokazu TSUKAYA: Progress towards an understanding of the mechanisms of leaf morphogenesis Plant Morphology, 1996, 8, 59-66.	0.1	0
239	Cell size regulation in the meristem. Plant Morphology, 2020, 32, 45-51.	0.1	0