
Benjamin Sacepe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/451667/publications.pdf Version: 2024-02-01

RENIAMIN SACEDE

#	Article	IF	CITATIONS
1	Imaging tunable quantum Hall broken-symmetry orders in graphene. Nature, 2022, 605, 51-56.	27.8	30
2	A tunable Fabry–Pérot quantum Hall interferometer in graphene. Nature Nanotechnology, 2021, 16, 555-562.	31.5	40
3	Thermal Relaxation in Metal Films Limited by Diffuson Lattice Excitations of Amorphous Substrates. Physical Review Applied, 2021, 15, .	3.8	7
4	Quantum breakdown of superconductivity in low-dimensional materials. Nature Physics, 2020, 16, 734-746.	16.7	80
5	Deficiency of the scaling collapse as an indicator of a superconductor-insulator quantum phase transition. Physical Review B, 2020, 101, .	3.2	3
6	Helical quantum Hall phase in graphene on SrTiO ₃ . Science, 2020, 367, 781-786.	12.6	64
7	Joule overheating poisons the fractional ac Josephson effect in topological Josephson junctions. Communications Physics, 2019, 2, .	5.3	36
8	Sensitivity of the superconducting state in thin films. Science Advances, 2019, 5, eaau3826.	10.3	54
9	Ionicâ€Liquid Gating of InAs Nanowireâ€Based Fieldâ€Effect Transistors. Advanced Functional Materials, 2019, 29, 1804378.	14.9	37
10	Low-Magnetic-Field Regime of a Gate-Defined Constriction in High-Mobility Graphene. Nano Letters, 2019, 19, 635-642.	9.1	12
11	Collective energy gap of preformed Cooper pairs in disordered superconductors. Nature Physics, 2019, 15, 233-236.	16.7	49
12	Low-temperature anomaly in disordered superconductors near Bc2 as a vortex-glass property. Nature Physics, 2019, 15, 48-53.	16.7	17
13	Pair-breaking quantum phase transition in superconducting nanowires. Nature Physics, 2018, 14, 912-917.	16.7	12
14	Tunable sub-gap radiation detection with superconducting resonators. Superconductor Science and Technology, 2017, 30, 045007.	3.5	16
15	Tunable transmission of quantum Hall edge channels with full degeneracy lifting in split-gated graphene devices. Nature Communications, 2017, 8, 14983.	12.8	35
16	Instability of Insulators near Quantum Phase Transitions. Physical Review Letters, 2017, 119, 247001.	7.8	7
17	Relaxation of the resistive superconducting state in boron-doped diamond films. Physical Review B, 2016, 93, .	3.2	9
18	Interplay between electron overheating and ac Josephson effect. Physical Review B, 2016, 93, .	3.2	22

BENJAMIN SACEPE

#	Article	IF	CITATIONS
19	Disorder and screening in decoupled graphene on a metallic substrate. Physical Review B, 2015, 91, .	3.2	11
20	High-field termination of a Cooper-pair insulator. Physical Review B, 2015, 91, .	3.2	23
21	Evidence for a Finite-Temperature Insulator. Scientific Reports, 2015, 5, 13503.	3.3	84
22	Collapse of superconductivity in a hybrid tin–graphene Josephson junction array. Nature Physics, 2014, 10, 380-386.	16.7	110
23	Duality symmetry and its breakdown in the vicinity of the superconductor–insulator transition. Nature Physics, 2013, 9, 415-418.	16.7	40
24	Niobium-based superconducting nano-device fabrication using all-metal suspended masks. Nanotechnology, 2013, 24, 375304.	2.6	12
25	Localization of preformed Cooper pairs in disordered superconductors. Nature Physics, 2011, 7, 239-244.	16.7	300
26	Transport through Graphene on <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>SrTiO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2011, 107, 225501.	7.8	93
27	Gate-tuned normal and superconducting transport at the surface of a topological insulator. Nature Communications, 2011, 2, 575.	12.8	246
28	Two-Dimensional Quantum Oscillations of the Conductance at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>LaAlO</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mo>/Physical Review Letters, 2010, 105, 236802.</mml:mo></mml:math 	:m <mark>7</mark> ;8 <mm< td=""><td>ıl:msub><mm< td=""></mm<></td></mm<>	ıl:msub> <mm< td=""></mm<>
29	Pseudogap in a thin film of a conventional superconductor. Nature Communications, 2010, 1, 140.	12.8	149
30	Magnetotransport through graphene nanoribbons. Physical Review B, 2010, 81, .	3.2	82
31	Electron-Phonon Decoupling in Disordered Insulators. Physical Review Letters, 2009, 102, 176802.	7.8	85
32	Disorder-Induced Inhomogeneities of the Superconducting State Close to the Superconductor-Insulator Transition. Physical Review Letters, 2008, 101, 157006.	7.8	274
33	Metal-to-insulator transition and superconductivity in boron-doped diamond. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 267-279.	3.4	49
34	Superconducting diamagnetic fluctuations in ropes of carbon nanotubes. Physical Review B, 2006, 73, .	3.2	21
35	Tunneling Spectroscopy and Vortex Imaging in Boron-Doped Diamond. Physical Review Letters, 2006, 96, 097006.	7.8	71
36	Scanning Tunneling Spectroscopy on a Disordered Superconductor. AIP Conference Proceedings, 2006, , .	0.4	2

#	Article	IF	CITATIONS
37	Experimental indications of a BCS behaviour in superconducting diamond. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3315-3323.	1.8	10
38	Generalized ellipsometry for the characterization of anisotropic materials: influence of the sample adjustment on the extracted optical indices. Thin Solid Films, 2004, 455-456, 581-585.	1.8	5