Steven Fletcher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4516407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ERK2 DBP domain opposes pathogenesis of a JAK2V617F-driven myeloproliferative neoplasm. Blood, 2022, , .	1.4	1
2	3JC48-3 (methyl 4′-methyl-5-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)-[1,1′-biphenyl]-3-carboxylate): a novel MYC/MAX dimerization inhibitor reduces prostate cancer growth. Cancer Gene Therapy, 2022, 29, 1550-1557.	4.6	4
3	Recent applications of covalent chemistries in protein–protein interaction inhibitors. RSC Medicinal Chemistry, 2022, 13, 921-928.	3.9	7
4	Scaffold hopping from indoles to indazoles yields dual MCL-1/BCL-2 inhibitors from MCL-1 selective leads. RSC Medicinal Chemistry, 2022, 13, 963-969.	3.9	4
5	Mechanistic Analysis of an Extracellular Signal–Regulated Kinase 2–Interacting Compound that Inhibits Mutant BRAF-Expressing Melanoma Cells by Inducing Oxidative Stress. Journal of Pharmacology and Experimental Therapeutics, 2021, 376, 84-97.	2.5	5
6	Shifting the paradigm in treating multi-factorial diseases: polypharmacological co-inhibitors of HDAC6. RSC Medicinal Chemistry, 2021, 12, 178-196.	3.9	6
7	CG223, a novel BET inhibitor, exerts TCF-β1-mediated antifibrotic effects in a murine model of bleomycin-induced pulmonary fibrosis. Pulmonary Pharmacology and Therapeutics, 2021, 70, 102057.	2.6	6
8	Orthogonal targeting of osteoclasts and myeloma cells for radionuclide stimulated dynamic therapy induces multidimensional cell death pathways. Theranostics, 2021, 11, 7735-7754.	10.0	8
9	VLA4-Targeted Nanoparticles Hijack Cell Adhesion–Mediated Drug Resistance to Target Refractory Myeloma Cells and Prolong Survival. Clinical Cancer Research, 2021, 27, 1974-1986.	7.0	17
10	Nanotherapy delivery of c-myc inhibitor targets Protumor Macrophages and preserves Antitumor Macrophages in Breast Cancer. Theranostics, 2020, 10, 7510-7526.	10.0	27
11	Rationally Designed Polypharmacology: αâ€Helix Mimetics as Dual Inhibitors of the Oncoproteins Mclâ€I and HDM2. ChemMedChem, 2020, 15, 1691-1698.	3.2	6
12	Construction of 1H-indazoles from ortho-aminobenzoximes by the Mitsunobu reaction. Tetrahedron Letters, 2019, 60, 150929.	1.4	10
13	MCL-1 inhibitors – where are we now (2019)?. Expert Opinion on Therapeutic Patents, 2019, 29, 909-919.	5.0	50
14	Optimization of a small-molecule Lipid II binder. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1849-1853.	2.2	2
15	Kröhnke pyridines: Rapid and facile access to Mcl-1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1949-1953.	2.2	13
16	Discovery of Mcl-1 inhibitors based on a thiazolidine-2,4-dione scaffold. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 523-528.	2.2	14
17	Discovery and lead identification of quinazoline-based BRD4 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3483-3488.	2.2	12
18	Therapeutic potential of Bcl-xl/Mcl-1 synthetic inhibitor JY-1-106 and retinoids for human triple-negative breast cancer treatment. Oncology Letters, 2018, 15, 7231-7236.	1.8	7

STEVEN FLETCHER

#	Article	IF	CITATIONS
19	CG13250, a novel bromodomain inhibitor, suppresses proliferation of multiple myeloma cells in an orthotopic mouse model. Biochemical and Biophysical Research Communications, 2017, 484, 262-268.	2.1	16
20	Synthesis, characterization and antineoplastic activity of bis-aziridinyl dimeric naphthoquinone – A novel class of compounds with potent activity against acute myeloid leukemia cells. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 6-10.	2.2	9
21	Expanding the Cancer Arsenal with Targeted Therapies: Disarmament of the Antiapoptotic Bcl-2 Proteins by Small Molecules. Journal of Medicinal Chemistry, 2017, 60, 821-838.	6.4	81
22	Mcl-1 inhibitors: a patent review. Expert Opinion on Therapeutic Patents, 2017, 27, 163-178.	5.0	36
23	Chromatography-free, Mitsunobu-triggered heterocyclizations of salicylhydroxamic acids to 3-hydroxybenzisoxazoles. Tetrahedron Letters, 2016, 57, 5301-5303.	1.4	4
24	Structural Reâ€engineering of the αâ€Helix Mimetic JYâ€1â€106 into Small Molecules: Disruption of the Mclâ€1–Bakâ€BH3 Protein–Protein Interaction with 2,6â€Diâ€Substituted Nicotinates. ChemMedChem, 201 827-833.	63.⊵l,	25
25	Structure-based design of N-substituted 1-hydroxy-4-sulfamoyl-2-naphthoates as selective inhibitors of the Mcl-1 oncoprotein. European Journal of Medicinal Chemistry, 2016, 113, 273-292.	5.5	42
26	Towards Development of Small Molecule Lipid II Inhibitors as Novel Antibiotics. PLoS ONE, 2016, 11, e0164515.	2.5	7
27	A Novel BRD4 Inhibitor CA2 Suppresses MM Cell Proliferation in an Orthotopic Myeloma Mouse Model. Blood, 2016, 128, 4722-4722.	1.4	0
28	Multi-Facial, Non-Peptidic α-Helix Mimetics. Biology, 2015, 4, 540-555.	2.8	13
29	Structure–activity exploration of a small-molecule Lipid II inhibitor. Drug Design, Development and Therapy, 2015, 9, 2383.	4.3	7
30	BRD4 Structure–Activity Relationships of Dual PLK1 Kinase/BRD4 Bromodomain Inhibitor BI-2536. ACS Medicinal Chemistry Letters, 2015, 6, 764-769.	2.8	74
31	Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5455-5460.	7.1	124
32	Small-molecule inhibitors of ERK-mediated immediate early gene expression and proliferation of melanoma cells expressing mutated BRaf. Biochemical Journal, 2015, 467, 425-438.	3.7	35
33	Perturbation of the c-Myc–Max Protein–Protein Interaction via Synthetic α-Helix Mimetics. Journal of Medicinal Chemistry, 2015, 58, 3002-3024.	6.4	76
34	Synthetic, structural mimetics of the β-hairpin flap of HIV-1 protease inhibit enzyme function. Bioorganic and Medicinal Chemistry, 2015, 23, 7095-7109.	3.0	4
35	Chromatography-Free Entry to Substituted Salicylonitriles: Mitsunobu-Triggered Domino Reactions of Salicylaldoximes. Journal of Organic Chemistry, 2015, 80, 1229-1234.	3.2	22
36	Small-molecule inhibitors of the Myc oncoprotein. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 525-543.	1.9	127

STEVEN FLETCHER

#	Article	IF	CITATIONS
37	A quantitative, surface plasmon resonance-based approach to evaluating DNA binding by the c-Myc oncoprotein and its disruption by small molecule inhibitors. Journal of Biological Methods, 2015, 2, e18.	0.6	17
38	Novel Bromodomain Inhibitors Suppress Proliferation of Multiple Myeloma Cells. Blood, 2015, 126, 4432-4432.	1.4	0
39	O-Alkylation of 3-hydroxyisoxazoles predominates under Mitsunobu conditions. Tetrahedron Letters, 2014, 55, 1693-1696.	1.4	9
40	Baeyer–Villiger rearrangement of a substituted pyrrole by Oxone. Tetrahedron Letters, 2014, 55, 3111-3113.	1.4	12
41	Discovery of Methyl 4′â€Methylâ€5â€{7â€nitrobenzo[<i>c</i>][1,2,5]oxadiazolâ€4â€yl)â€{1,1′â€biphenyl Improved Smallâ€Molecule Inhibitor of câ€Myc–Max Dimerization. ChemMedChem, 2014, 9, 2274-2285.]â€3â€car	bg <u>y</u> ylate, an
42	BCL-xL/MCL-1 inhibition and RARÎ ³ antagonism work cooperatively in human HL60 leukemia cells. Experimental Cell Research, 2014, 327, 183-191.	2.6	10
43	Azodicarbonyl dimorpholide (ADDM): an effective, versatile, and water-soluble Mitsunobu reagent. Tetrahedron Letters, 2013, 54, 4624-4628.	1.4	20
44	The novel BH3 α-helix mimetic JY-1-106 induces apoptosis in a subset of cancer cells (lung cancer, colon) Tj ETQq Molecular Cancer, 2013, 12, 42.	0 0 0 rgBT 19.2	/Overlock 1 78
45	Amphipathic α-Helix Mimetics Based on a 1,2-Diphenylacetylene Scaffold. Organic Letters, 2013, 15, 3234-3237.	4.6	41
46	Recapitulating the α-helix: nonpeptidic, low-molecular-weight ligands for the modulation of helix-mediated protein–protein interactions. Future Medicinal Chemistry, 2013, 5, 2157-2174.	2.3	16
47	Fine-tuning the chemo- and regioselective alkylation of 1,4-benzodiazepines: further applications of the Mitsunobu reaction. MedChemComm, 2012, 3, 1160.	3.4	11
48	Small-molecule inhibitors of dimeric transcription factors: Antagonism of protein–protein and protein–DNA interactions. MedChemComm, 2012, 3, 541.	3.4	27
49	Concise access to N9-mono-, N2-mono- and N2,N9-di-substituted guanines via efficient Mitsunobu reactions. Tetrahedron, 2010, 66, 4621-4632.	1.9	49
50	Regioselective alkylation of the exocyclic nitrogen of adenine and adenosine by the Mitsunobu reaction. Tetrahedron Letters, 2010, 51, 2948-2950.	1.4	19
51	Structure-Based Design and Synthesis of Potent, Ethylenediamine-Based, Mammalian Farnesyltransferase Inhibitors as Anticancer Agents. Journal of Medicinal Chemistry, 2010, 53, 6867-6888.	6.4	38
52	Facile and efficient access to 2,6,9-tri-substituted purines through sequential N9, N2 Mitsunobu reactions. Tetrahedron Letters, 2009, 50, 4258-4261.	1.4	29
53	Potent, Plasmodium-Selective Farnesyltransferase Inhibitors That Arrest the Growth of Malaria Parasites: Structureâ^'Activity Relationships of Ethylenediamine-Analogue Scaffolds and Homology Model Validation. Journal of Medicinal Chemistry, 2008, 51, 5176-5197.	6.4	33
54	Protein-Protein Interaction Inhibitors: Small Molecules from Screening Techniques. Current Topics in Medicinal Chemistry, 2007, 7, 922-927.	2.1	71

STEVEN FLETCHER

#	Article	IF	CITATIONS
55	Denaturation and accelerated proteolysis of sizeable heme proteins by synthetic metalloporphyrins. New Journal of Chemistry, 2007, 31, 623.	2.8	7
56	Targeting protein–protein interactions by rational design: mimicry of protein surfaces. Journal of the Royal Society Interface, 2006, 3, 215-233.	3.4	151
57	Protein surface recognition and proteomimetics: mimics of protein surface structure and function. Current Opinion in Chemical Biology, 2005, 9, 632-638.	6.1	122