
Ivan N Shatsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4515995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ribosomal leaky scanning through a translated uORF requires elF4G2. Nucleic Acids Research, 2022, 50, 1111-1127.	14.5	21
2	Non-AUG translation initiation in mammals. Genome Biology, 2022, 23, 111.	8.8	25
3	Modifications of Ribosome Profiling that Provide New Data on the Translation Regulation. Biochemistry (Moscow), 2021, 86, 1095-1106.	1.5	2
4	Ribosome Pausing at Inefficient Codons at the End of the Replicase Coding Region Is Important for Hepatitis C Virus Genome Replication. International Journal of Molecular Sciences, 2020, 21, 6955.	4.1	3
5	Unusually efficient CUG initiation of an overlapping reading frame in <i>POLG</i> mRNA yields novel protein POLGARF. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24936-24946.	7.1	30
6	elF4G2 balances its own mRNA translation via a PCBP2-based feedback loop. Rna, 2019, 25, 757-767.	3.5	14
7	Translatome and transcriptome analysis of TMA20 (MCT-1) and TMA64 (elF2D) knockout yeast strains. Data in Brief, 2019, 23, 103701.	1.0	14
8	A novel uORF-based regulatory mechanism controls translation of the human MDM2 and eIF2D mRNAs during stress. Biochimie, 2019, 157, 92-101.	2.6	12
9	Eukaryotic translation elongation factor 2 (eEF2) catalyzes reverse translocation of the eukaryotic ribosome. Journal of Biological Chemistry, 2018, 293, 5220-5229.	3.4	25
10	Translation control of mRNAs encoding mammalian translation initiation factors. Gene, 2018, 651, 174-182.	2.2	16
11	Cap-Independent Translation: What's in a Name?. Trends in Biochemical Sciences, 2018, 43, 882-895.	7.5	77
12	Tma64/eIF2D, Tma20/MCT-1, and Tma22/DENR Recycle Post-termination 40S Subunits InÂVivo. Molecular Cell, 2018, 71, 761-774.e5.	9.7	62
13	Insights into the mechanisms of eukaryotic translation gained with ribosome profiling. Nucleic Acids Research, 2017, 45, 513-526.	14.5	124
14	A researcher's guide to the galaxy of IRESs. Cellular and Molecular Life Sciences, 2017, 74, 1431-1455.	5.4	68
15	Four translation initiation pathways employed by the leaderless mRNA in eukaryotes. Scientific Reports, 2016, 6, 37905.	3.3	40
16	Pros and cons of pDNA and mRNA transfection to study mRNA translation in mammalian cells. Gene, 2016, 578, 1-6.	2.2	20
17	Sliding of a 43S ribosomal complex from the recognized AUG codon triggered by a delay in elF2-bound GTP hydrolysis. Nucleic Acids Research, 2016, 44, 1882-1893.	14.5	31
18	Does HIV-1 mRNA 5'-untranslated region bear an internal ribosome entry site?. Biochimie, 2016, 121, 228-237	2.6	18

Ινάν Ν Shatsky

#	Article	IF	CITATIONS
19	Oxygen and glucose deprivation induces widespread alterations in mRNA translation within 20Aminutes. Genome Biology, 2015, 16, 90.	8.8	110
20	Translation of 5′ leaders is pervasive in genes resistant to elF2 repression. ELife, 2015, 4, e03971.	6.0	294
21	Transcriptome-wide studies uncover the diversity of modes of mRNA recruitment to eukaryotic ribosomes. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49, 164-177.	5.2	52
22	A novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent. Nucleic Acids Research, 2013, 41, 1807-1816.	14.5	57
23	Glycyl-tRNA synthetase specifically binds to the poliovirus IRES to activate translation initiation. Nucleic Acids Research, 2012, 40, 5602-5614.	14.5	54
24	The 5′ untranslated region of Apafâ€1 mRNA directs translation under apoptosis conditions via a 5′ endâ€dependent scanning mechanism. FEBS Letters, 2012, 586, 4139-4143.	2.8	25
25	Archaeal Translation Initiation Factor alF2 Can Substitute for Eukaryotic elF2 in Ribosomal Scanning during Mammalian 48S Complex Formation. Journal of Molecular Biology, 2011, 413, 106-114.	4.2	14
26	Unidirectional constant rate motion of the ribosomal scanning particle during eukaryotic translation initiation. Nucleic Acids Research, 2011, 39, 5555-5567.	14.5	71
27	Cap- and IRES-Independent Scanning Mechanism of Translation Initiation as an Alternative to the Concept of Cellular IRESs. Molecules and Cells, 2010, 30, 285-294.	2.6	103
28	GTP-independent tRNA Delivery to the Ribosomal P-site by a Novel Eukaryotic Translation Factor. Journal of Biological Chemistry, 2010, 285, 26779-26787.	3.4	144
29	Differential contribution of the m7G-cap to the 5′ end-dependent translation initiation of mammalian mRNAs. Nucleic Acids Research, 2009, 37, 6135-6147.	14.5	79
30	Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2. Nature Structural and Molecular Biology, 2008, 15, 836-841.	8.2	163
31	Efficient Translation Initiation Directed by the 900-Nucleotide-Long and GC-Rich 5′ Untranslated Region of the Human Retrotransposon LINE-1 mRNA Is Strictly Cap Dependent Rather than Internal Ribosome Entry Site Mediated. Molecular and Cellular Biology, 2007, 27, 4685-4697.	2.3	111
32	A Leaderless mRNA Can Bind to Mammalian 80S Ribosomes and Direct Polypeptide Synthesis in the Absence of Translation Initiation Factors. Molecular and Cellular Biology, 2006, 26, 3164-3169.	2.3	60
33	A Cross-Kingdom Internal Ribosome Entry Site Reveals a Simplified Mode of Internal Ribosome Entry. Molecular and Cellular Biology, 2005, 25, 7879-7888.	2.3	75
34	Functional and Structural Similarities between the Internal Ribosome Entry Sites of Hepatitis C Virus and Porcine Teschovirus, a Picornavirus. Journal of Virology, 2004, 78, 4487-4497.	3.4	102
35	Conversion of 48S translation preinitiation complexes into 80S initiation complexes as revealed by toeprinting. FEBS Letters, 2003, 533, 99-104.	2.8	62
36	Assembly of 48S Translation Initiation Complexesfrom Purified Components with mRNAs That Have Some Base Pairingwithin Their 5′ UntranslatedRegions. Molecular and Cellular Biology, 2003, 23, 8925-8933.	2.3	82

#	Article	IF	CITATIONS
37	Specific Interaction of Eukaryotic Translation Initiation Factor 3 with the 5′ Nontranslated Regions of Hepatitis C Virus and Classical Swine Fever Virus RNAs. Journal of Virology, 1998, 72, 4775-4782.	3.4	266
38	Unusual ribosome binding properties of mRNA encoding bacteriophage λ repressor. Nucleic Acids Research, 1992, 20, 563-571.	14.5	62