Sicheng Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4515722/publications.pdf

Version: 2024-02-01

933447 794594 24 761 10 19 citations h-index g-index papers 24 24 24 1528 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Targeting RUNX1 as a novel treatment modality for pulmonary arterial hypertension. Cardiovascular Research, 2022, 118, 3211-3224.	3.8	16
2	Differentiation Epitopes Define Hematopoietic Stem Cells and Change with Cell Cycle Passage. Stem Cell Reviews and Reports, 2022, 18, 2351-2364.	3.8	2
3	The role of salivary vesicles as a potential inflammatory biomarker to detect traumatic brain injury in mixed martial artists. Scientific Reports, 2021, 11, 8186.	3.3	12
4	Murine Leukemia-Derived Extracellular Vesicles Elicit Antitumor Immune Response. Journal of Blood Medicine, 2021, Volume 12, 277-285.	1.7	3
5	Mesenchymal Stem Cell Derived Extracellular Vesicles Reverse Radiation-Induced Cytokine Storm. Blood, 2021, 138, 1100-1100.	1.4	0
6	Mesenchymal Stem Cell Extracellular Vesicles Reverse Sugen/Hypoxia Pulmonary Hypertension in Rats. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 577-587.	2.9	54
7	Age-Associated Changes in Bone Marrow-Derived Extracellular Vesicles May Alter Their Effects on Murine Hematopoietic Stem Cell Function. Blood, 2020, 136, 37-37.	1.4	1
8	Biodistribution of Mesenchymal Stem Cell-Derived Extracellular Vesicles in a Radiation Injury Bone Marrow Murine Model. International Journal of Molecular Sciences, 2019, 20, 5468.	4.1	42
9	Renal Regenerative Potential of Extracellular Vesicles Derived from miRNA-Engineered Mesenchymal Stromal Cells. International Journal of Molecular Sciences, 2019, 20, 2381.	4.1	40
10	Daily rhythms influence the ability of lung-derived extracellular vesicles to modulate bone marrow cell phenotype. PLoS ONE, 2018, 13, e0207444.	2.5	9
11	Extracellular Vesicles (EVs) Shape the Leukemic Microenvironment. Blood, 2018, 132, 5428-5428.	1.4	4
12	Renal Regenerative Potential of Different Extracellular Vesicle Populations Derived from Bone Marrow Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2017, 23, 1262-1273.	3.1	159
13	Bone Marrow Endothelial Progenitor Cells Are the Cellular Mediators of Pulmonary Hypertension in the Murine Monocrotaline Injury Model. Stem Cells Translational Medicine, 2017, 6, 1595-1606.	3.3	21
14	Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovascular Research, 2016, 110, 319-330.	3.8	196
15	Potential functional applications of extracellular vesicles: a report by the NIH Common Fund Extracellular RNA Communication Consortium. Journal of Extracellular Vesicles, 2015, 4, 27575.	12.2	28
16	Lungâ€derived exosome uptake into and epigenetic modulation of marrow progenitor/stem and differentiated cells. Journal of Extracellular Vesicles, 2015, 4, 26166.	12.2	23
17	Endothelial Progenitor Cells Are the Bone Marrow Cell Population in Mice with Monocrotaline-Induced Pulmonary Hypertension Which Induce Pulmonary Hypertension in Healthy Mice. Blood, 2015, 126, 3455-3455.	1.4	3
18	Hematopoietic Stem Cell Purification Leads to Loss of a Stem Cell Population within the Lineage Positive Cellular Fraction. Blood, 2015, 126, 4756-4756.	1.4	0

SICHENG WEN

#	Article	IF	CITATION
19	Biological Effects of Different Extracellular Vesicles Population on Reversal of Marrow Cells Radiation Damage. Blood, 2015, 126, 3598-3598.	1.4	0
20	Reversal of Radiation Damage to Marrow Stem Cells By Mesenchymal Stem Cell Derived Vesicles. Blood, 2014, 124, 5118-5118.	1.4	1
21	Intercellular Communication Between Extracellular Vesicles and Murine Marrow Cells Is Influenced By Circadian Rhythm. Blood, 2014, 124, 2924-2924.	1.4	O
22	Defining Engraftment Potential within the Lineage Positive Population in Murine Marrow. Blood, 2014, 124, 4303-4303.	1.4	0
23	Mesenchymal Stem Cell-Derived Vesicles Reverse Hematopoietic Radiation Damage. Blood, 2013, 122, 2459-2459.	1.4	3
24	Helicobacter pylori virulence factors in gastric carcinogenesis. Cancer Letters, 2009, 282, 1-8.	7.2	144