Jeremy G Wideman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4515028/publications.pdf Version: 2024-02-01

IEDEMY C. WIDEMAN

#	Article	IF	CITATIONS
1	Constructive Neutral Evolution 20 Years Later. Journal of Molecular Evolution, 2021, 89, 172-182.	1.8	44
2	A functional bacteria-derived restriction modification system in the mitochondrion of a heterotrophic protist. PLoS Biology, 2021, 19, e3001126.	5.6	6
3	Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoans. BMC Biology, 2021, 19, 103.	3.8	10
4	A Eukaryote-Wide Perspective on the Diversity and Evolution of the ARF GTPase Protein Family. Genome Biology and Evolution, 2021, 13, .	2.5	18
5	Depletion of a <i>Toxoplasma</i> porin leads to defects in mitochondrial morphology and contacts with the endoplasmic reticulum. Journal of Cell Science, 2021, 134, .	2.0	17
6	Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nature Communications, 2021, 12, 6651.	12.8	40
7	First report of mitochondrial COI in foraminifera and implications for DNA barcoding. Scientific Reports, 2021, 11, 22165.	3.3	8
8	Unexpected mitochondrial genome diversity revealed by targeted single-cell genomics of heterotrophic flagellated protists. Nature Microbiology, 2020, 5, 154-165.	13.3	44
9	Independent accretion of TIM22 complex subunits in the animal and fungal lineages. F1000Research, 2020, 9, 1060.	1.6	7
10	Homologue replacement in the import motor of the mitochondrial inner membrane of trypanosomes. ELife, 2020, 9, .	6.0	21
11	Editorial overview: Investigating phenotype evolution in the post-genomic era. Current Opinion in Genetics and Development, 2019, 58-59, iii-v.	3.3	1
12	ER-shaping atlastin proteins act as central hubs to promote flavivirus replication and virion assembly. Nature Microbiology, 2019, 4, 2416-2429.	13.3	59
13	A single-cell genome reveals diplonemid-like ancestry of kinetoplastid mitochondrial gene structure. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190100.	4.0	13
14	Neutral evolution of cellular phenotypes. Current Opinion in Genetics and Development, 2019, 58-59, 87-94.	3.3	17
15	Mutationism, not Lamarckism, captures the novelty of CRISPR–Cas. Biology and Philosophy, 2019, 34, 1.	1.4	5
16	Concepts of the last eukaryotic common ancestor. Nature Ecology and Evolution, 2019, 3, 338-344.	7.8	44
17	Evolutionary conservation of a core fungal phosphate homeostasis pathway coupled to development in Blastocladiella emersonii. Fungal Genetics and Biology, 2018, 115, 20-32.	2.1	13
18	Comparative genomic analysis of the â€~pseudofungus' <i>Hyphochytrium catenoides</i> . Open Biology, 2018, 8, 170184.	3.6	31

JEREMY G WIDEMAN

#	Article	IF	CITATIONS
19	Cell Biology: Functional Conservation, Structural Divergence, and Surprising Convergence in the MICOS Complex of Trypanosomes. Current Biology, 2018, 28, R1245-R1248.	3.9	8
20	A new mitofusin topology places the redox-regulated C terminus in the mitochondrial intermembrane space. Journal of Cell Biology, 2018, 217, 507-515.	5.2	117
21	PDZD8 is not the â€~functional ortholog' of Mmm1, it is a paralog. F1000Research, 2018, 7, 1088.	1.6	23
22	The origin of mitochondrial cristae from alphaproteobacteria. Molecular Biology and Evolution, 2017, 34, msw298.	8.9	71
23	Losing Complexity: The Role of Simplification in Macroevolution. Trends in Ecology and Evolution, 2016, 31, 608-621.	8.7	55
24	The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 900-912.	2.4	49
25	Ancient Homology of the Mitochondrial Contact Site and Cristae Organizing System Points to an Endosymbiotic Origin of Mitochondrial Cristae. Current Biology, 2015, 25, 1489-1495.	3.9	95
26	The evolution of MICOS: Ancestral and derived functions and interactions. Communicative and Integrative Biology, 2015, 8, e1094593.	1.4	32
27	The ubiquitous and ancient ER membrane protein complex (EMC): tether or not?. F1000Research, 2015, 4, 624.	1.6	75
28	The ubiquitous and ancient ER membrane protein complex (EMC): tether or not?. F1000Research, 2015, 4, 624.	1.6	63
29	The Evolutionary History of MAPL (Mitochondria-Associated Protein Ligase) and Other Eukaryotic BAM/GIDE Domain Proteins. PLoS ONE, 2015, 10, e0128795.	2.5	2
30	From all to (nearly) none. Cellular Logistics, 2014, 4, e28114.	0.9	22
31	The Cell Biology of the Endocytic System from an Evolutionary Perspective. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016998-a016998.	5.5	34
32	The Ancient and Widespread Nature of the ER–Mitochondria Encounter Structure. Molecular Biology and Evolution, 2013, 30, 2044-2049.	8.9	90
33	Analysis of Mutations in Neurospora crassa ERMES Components Reveals Specific Functions Related to β-Barrel Protein Assembly and Maintenance of Mitochondrial Morphology. PLoS ONE, 2013, 8, e71837.	2.5	20
34	Roles of the Mdm10, Tom7, Mdm12, and Mmm1 Proteins in the Assembly of Mitochondrial Outer Membrane Proteins in Neurospora crassa. Molecular Biology of the Cell, 2010, 21, 1725-1736.	2.1	57