Nazmul Karim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4515007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental Impacts of Personal Protective Clothing Used to Combat COVID―19. Advanced Sustainable Systems, 2022, 6, 2100176.	5.3	48
2	Three-dimensional composites with nearly isotropic negative Poisson's ratio by random inclusions: Experiments and finite element simulation. Composites Science and Technology, 2022, 218, 109195.	7.8	11
3	The effect of surface treatments and graphene-based modifications on mechanical properties of natural jute fiber composites: A review. IScience, 2022, 25, 103597.	4.1	36
4	Fully printed and multifunctional graphene-based wearable e-textiles for personalized healthcare applications. IScience, 2022, 25, 103945.	4.1	40
5	Sustainable and Multifunctional Composites of Grapheneâ€Based Natural Jute Fibers. Advanced Sustainable Systems, 2021, 5, 2000228.	5.3	48
6	Enhancing the mechanical properties of natural jute yarn suitable for structural applications. Materials Research Express, 2021, 8, 055503.	1.6	16
7	Grapheneâ€Based Technologies for Tackling COVIDâ€19 and Future Pandemics. Advanced Functional Materials, 2021, 31, 2107407.	14.9	43
8	Investigation into the effects of fillers in polymer processing. International Journal of Lightweight Materials and Manufacture, 2021, 4, 370-382.	2.1	22
9	Multifunctional Graphene-Based Wearable E-Textiles. Proceedings (mdpi), 2021, 68, .	0.2	11
10	Sustainable Personal Protective Clothing for Healthcare Applications: A Review. ACS Nano, 2020, 14, 12313-12340.	14.6	252
11	Graphene-Enabled Adaptive Infrared Textiles. Nano Letters, 2020, 20, 5346-5352.	9.1	98
12	Highly Conductive, Scalable, and Machine Washable Grapheneâ€Based Eâ€Textiles for Multifunctional Wearable Electronic Applications. Advanced Functional Materials, 2020, 30, 2000293.	14.9	204
13	A Graphene-Based Sleep Mask for Comfortable Wearable Eye Tracking. , 2019, 2019, 6693-6696.		6
14	All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications. Scientific Reports, 2019, 9, 8035.	3.3	141
15	Ultrahigh Performance of Nanoengineered Graphene-Based Natural Jute Fiber Composites. ACS Applied Materials & Interfaces, 2019, 11, 21166-21176.	8.0	106
16	Engineering Graphene Flakes for Wearable Textile Sensors <i>via</i> Highly Scalable and Ultrafast Yarn Dyeing Technique. ACS Nano, 2019, 13, 3847-3857.	14.6	179
17	Performance of graphene ECG electrodes under varying conditions. , 2018, 2018, 3813-3816.		9
18	High-Performance Graphene-Based Natural Fiber Composites. ACS Applied Materials & 2018, 10, 34502-34512.	8.0	116

NAZMUL KARIM

#	Article	IF	CITATIONS
19	Graphene-based surface heater for de-icing applications. RSC Advances, 2018, 8, 16815-16823.	3.6	112
20	All inkjet-printed graphene-based conductive patterns for wearable e-textile applications. Journal of Materials Chemistry C, 2017, 5, 11640-11648.	5.5	217
21	Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Materials, 2017, 4, 035016.	4.4	146
22	Scalable Production of Graphene-Based Wearable E-Textiles. ACS Nano, 2017, 11, 12266-12275.	14.6	274
23	Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabrics. Journal of Materials Science, 2015, 50, 4576-4585.	3.7	37
24	Surface chemical analysis of the effect of curing conditions on the properties of thermally-cured pigment printed poly (lactic acid) fabrics. Dyes and Pigments, 2014, 103, 168-174.	3.7	25